

Numerical Results of the Theory of the Diffraction of a Plane Electromagnetic Wave by a Perfectly Conducting Sphere

J. Proudman, A. T. Doodson and G. Kennedy

Phil. Trans. R. Soc. Lond. A 1918 217, 279-314

doi: 10.1098/rsta.1918.0008

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

279

VIII. Numerical Results of the Theory of the Diffraction of a Plane Electromagnetic Wave by a Perfectly Conducting Sphere.

By J. Proudman, A. T. Doodson, and G. Kennedy.

Communicated by T. J. I'A. Bromwich, Sc.D., F.R.S.

Received April 13,—Read November 23, 1916.

Introduction.

(By J. PROUDMAN.)

1. At the suggestion of Dr. Bromwich, I began the computations leading to this paper nearly three years ago. Using tables constructed by Lord RAYLEIGH* and Prof. A. Lodge,* I obtained results for $\kappa a = 1, 2, 10^{\dagger}$ and $\theta = 0^{\circ}, 180^{\circ}; 90^{\circ}; 45^{\circ},$ 135°; 20°, 160°; 70°, 110°; in this order. From the results for $\kappa \alpha = 1$ and 2, graphs of Y₁, Y₂, Z₁, Z₂ could be constructed with some confidence, but such graphs were entirely impossible in the case of $\kappa a = 10$, owing to the large number of their undulations. (For the graphs of these functions, as finally drawn, see figs. 1, 3, 18, 20, 22, 24.)

I then handed over the work to Messrs. Doodson and Kennedy, and the whole of the results as they now appear are due to them. Mr. Doodson first constructed tables! for Bessel's functions of half-integral orders, and Mr. Kennedy constructed tables for the derivatives of Legendre's functions. These two sets of tables, together with those of Lodge already quoted, are what have been used in all the subsequent work.

Mr. Doodson computed quite independently the cases of $\kappa \alpha = 1, 2$, for all the values of θ that I had taken together with $\theta = 10^\circ$, 170° ; 30° , 150° ; 60° , 120° ; 80° , 100° . His results were in agreement with mine, except for a number of small differences

* RAYLEIGH, "On the Acoustic Shadow of a Sphere, with an Appendix giving the Values of LEGENDRE'S Functions, . . ., by Prof. A. Lodge," 'Phil. Trans. Roy. Soc.,' A, vol. ceiii., p. 87 (1904); ['Sc. Papers,' vol. v., p. 149].

RAYLEIGH, "Incidence of Light upon a Transparent Sphere of Dimensions comparable with a Wavelength," 'Roy. Soc. Proc.,' A, vol. lxxxiv., p. 25 (1910); ['Sc. Papers,' vol. v., p. 547].

- † The notation is explained in the next section.
- † These have been published by the British Association; 'Report' for 1914, p. 87.
- § These are to be presented shortly to the British Association.

VOL. CCXVII.—A 556.

[Published August 15, 1917.

which he found to be due to numerical errors on my part. From the larger number of values of θ thus taken, graphs of $Y_1^2 + Y_2^2$, $Z_1^2 + Z_2^2$ (figs. 2, 4) could be constructed with confidence and no further work was necessary for $\kappa a = 1, 2$. XI. $(\kappa a = 1, 2)$, and figs. 1 to 4, contain the results of this part of Mr. Doodson's work.

Sharing equally the labour, Messrs. Doodson and Kennedy then similarly recomputed the case of $\kappa a = 10$, and added the extra values of θ which had been taken for $\kappa a = 1, 2$. It then proved possible to construct rough graphs of Y_1, Y_2, Z_1, Z_2 , but the uncertainties in the graphs of $Y_1^2 + Y_2^2$, $Z_1^2 + Z_2^2$ were very great, owing to the magnification of errors involved in the squaring. In order to get more insight into the general nature of the results, they performed for $\kappa a = 9$ all the work that they had done for $\kappa a = 10$, sharing it similarly. The construction of accurate graphs of $Y_1^2 + Y_2^2$, $Z_1^2 + Z_2^2$ proved as impossible as before, i.e., knowing only the points on the curves of figs. 25 to 28, indicated by small circles, the complete curves could not be drawn.

Mr. Doodson then conceived the idea of calculating the gradients of the curves at all the values of θ taken, and formed the necessary series. Mr. Kennedy shared the computations with him, and the gradients were calculated at every known point of the curves for both $\kappa a = 9$ and 10. These proved a great help.

At this stage the results obtained for $\kappa \alpha = 9$, 10 were those indicated by the small circles and tangents in figs. 17 to 28. The small uncertainties in the graphs of Y₁, Y₂, Z_1 , Z_2 , still led to considerable uncertainties in those of $Y_1^2 + Y_2^2$, $Z_1^2 + Z_2^2$. Mr. Doodson then designed and carried out an examination of the way in which the results found differ from those given by the theoretical first approximation for large The sections on analysis of results and interpolation give this work. Some of the methods proved their utility by leading to the detection of certain errors in the previous work, and all of them were used for interpolation purposes in constructing the final curves.

Only the curves, as finally constructed from all considerations, are now given.

In the work of drawing up the results, all the curves have been drawn by Mr. Doodson, while most of the tables have been written out by Mr. Kennedy. Only a selection, however, is printed; the remainder are in the possession of the Royal Society. For instance, Tables I. to VIII. are only printed in so far as they refer to $\kappa a = 10$, while Tables XII. to XIX., which refer to the gradients, are omitted altogether.

General Formulæ.

- 2. For the theory of the problem we shall quote a paper by Dr. Bromwich on The Scattering of Plane Waves by Spheres."*
 - * This is a paper which Dr. Bromwich communicated to the Society at the same time as the present one.

Using spherical polar co-ordinates r, θ , ϕ , the incident plane wave train is taken to contain the time factor $e^{i\kappa ct}$, to travel along the negative direction of the axis $\theta = 0$, to be polarized in the plane $\phi = \frac{1}{2}\pi$, and to have the electric force of unit amplitude. The components of electric and magnetic force, in the disturbance produced by the sphere, along the directions of r, θ , ϕ increasing, are denoted respectively by X, Y, Z and α , β , γ . Then at a distance from the sphere, which is large compared with a wave-length of the incident train, we have, from the paper quoted,

$$X = c\alpha = 0,$$

$$Y = c\gamma = \frac{\partial M}{\partial \theta} - \frac{\partial N}{\sin \theta \partial \phi},$$

$$Z = -c\beta = \frac{\partial M}{\sin \theta \partial \phi} + \frac{\partial N}{\partial \theta},$$
(1)

where

$$M = \cos \phi \frac{e^{-i\kappa(r-ct)}}{\kappa r} \sin \theta \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)} \frac{S'_n(\kappa a)}{E'_n(\kappa a)} P'_n(\cos \theta),$$

$$N = \sin^2 \phi \frac{e^{-i\kappa(r-ct)}}{\kappa r} \sin \theta \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)} \frac{S_n(\kappa a)}{E_n(\kappa a)} P'_n(\cos \theta).$$
(2)

Take now

$$Y = \cos \phi \frac{e^{-i\kappa(r-ct)}}{\kappa r} (Y_1 + iY_2),$$

$$Z = \sin \phi \frac{e^{-i\kappa(r-ct)}}{\kappa r} (Z_1 + iZ_2),$$
(3)

where Y_1 , Y_2 , Z_1 , Z_2 are real. Then the time-means of the squares of the real parts of Y and Z are respectively

These give a measure of the energy of the disturbance.

The functions Y_1 , Y_2 , Z_1 , Z_2 involve only κa and θ . It is the object of the present paper to evaluate them, together with $Y_1^2 + Y_2^2$ and $Z_1^2 + Z_2^2$ for certain values of κa , and all values of θ from 0 to π .

Writing $\cos \theta = \mu$, we have

$$\frac{d}{d\theta} \left\{ \sin \theta \mathbf{P}'_{n}(\mu) \right\} = n (n+1) \mathbf{P}_{n}(\mu) - \mu \mathbf{P}'_{n}(\mu),$$

using which we obtain

$$Y_1 = A + \mu A' - C',$$
 $Y_2 = B + \mu B' - D',$
 $Z_1 = A' + \mu A - C,$ $Z_2 = B' + \mu B - D,$

$$\begin{cases}
Z_1 = A' + \mu A - C, & Z_2 = B' + \mu B - D, \\
2 & R & 2
\end{cases}$$
(5)

where

$$A = \sum_{n=1}^{\infty} (-1)^{n} \frac{2n+1}{n(n+1)} \frac{S_{n}(\kappa \alpha) C_{n}(\kappa \alpha)}{|E_{n}(\kappa \alpha)|^{2}} P'_{n}(\mu),$$

$$B = \sum_{n=1}^{\infty} (-1)^{n} \frac{2n+1}{n(n+1)} \frac{S_{n}^{2}(\kappa \alpha)}{|E_{n}(\kappa \alpha)|^{2}} P'_{n}(\mu),$$

$$C = \sum_{n=1}^{\infty} (-1)^{n} (2n+1) \frac{S_{n}(\kappa \alpha) C_{n}(\kappa \alpha)}{|E_{n}(\kappa \alpha)|^{2}} P_{n}(\mu),$$

$$D = \sum_{n=1}^{\infty} (-1)^{n} (2n+1) \frac{S_{n}^{2}(\kappa \alpha)}{|E_{n}(\kappa \alpha)|^{2}} P_{n}(\mu),$$
(6)

and

$$A' = \sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)} \frac{S'_n(\kappa a) C'_n(\kappa a)}{|E'_n(\kappa a)|^2} P'_n(\mu),$$

$$B' = \sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)} \frac{S'_n{}^2(\kappa a)}{|E'_n(\kappa a)|^2} P'_n(\mu),$$

$$C' = \sum_{n=1}^{\infty} (-1)^n (2n+1) \frac{S'_n(\kappa a) C'_n(\kappa a)}{|E'_n(\kappa a)|^2} P_n(\mu),$$

$$D' = \sum_{n=1}^{\infty} (-1)^n (2n+1) \frac{S'_n{}^2(\kappa a)}{|E'_n(\kappa a)|^2} P_n(\mu).$$
(7)

Further, we easily obtain

$$\frac{\partial Y_{1}}{\partial \mu} = \frac{\mu Y_{1} + Z_{1}}{1 - \mu^{2}} - \frac{\partial C'}{\partial \mu}, \qquad \frac{\partial Y_{2}}{\partial \mu} = \frac{\mu Y_{2} + Z_{2}}{1 - \mu^{2}} - \frac{\partial D'}{\partial \mu},
\frac{\partial Z_{1}}{\partial \mu} = \frac{\mu Z_{1} + Y_{1}}{1 - \mu^{2}} - \frac{\partial C}{\partial \mu}, \qquad \frac{\partial Z_{2}}{\partial \mu} = \frac{\mu Z_{2} + Y_{2}}{1 - \mu^{2}} - \frac{\partial D}{\partial \mu},$$
(8)

while if we denote $\partial C/\partial \mu$, $\partial D/\partial \mu$, $\partial C'/\partial \mu$, $\partial D'/\partial \mu$ by c, d, c', d' respectively, we have

$$c = \sum_{n=1}^{\infty} (-1)^{n} (2n+1) \frac{S_{n} (\kappa \alpha) C_{n} (\kappa \alpha)}{|E_{n} (\kappa \alpha)|^{2}} P'_{n} (\mu),$$

$$d = \sum_{n=1}^{\infty} (-1)^{n} (2n+1) \frac{S_{n}^{2} (\kappa \alpha)}{|E_{n} (\kappa \alpha)|^{2}} P'_{n} (\mu),$$

$$c' = \sum_{n=1}^{\infty} (-1)^{n} (2n+1) \frac{S'_{n} (\kappa \alpha) C'_{n} (\kappa \alpha)}{|E'_{n} (\kappa \alpha)|^{2}} P'_{n} (\mu),$$

$$d' = \sum_{n=1}^{\infty} (-1)^{n} (2n+1) \frac{S'_{n}^{2} (\kappa \alpha)}{|E'_{n} (\kappa \alpha)|^{2}} P'_{n} (\mu).$$

In summing the series in (6), (7), (9), supplementing values of θ may be considered at the same time if the odd and even terms of these series are taken separately.

shall use the suffixes 1, 2, to denote respectively the sums of odd terms and sums of Then for supplementary values of θ , the two values of each of even terms.

$$A_1, B_1, A'_1, B'_1, C_2, D_2, C'_2, D'_2, c_1, d_1, c'_1, d'_1,$$

are equal, while the two values of each of

$$A_2$$
, B_2 , A'_2 , B'_2 , C_1 , D_1 , C'_1 , D'_1 , c_2 , d_2 , c'_2 , d'_2 ,

are equal and opposite. For this reason in computing Y₁, for example, we evaluate

$$A_1 + \mu A'_2 - C'_2$$
, $A_2 + \mu A'_1 - C'_1$,

separately for $0 \le \theta \le \frac{1}{2}\pi$.

For $\theta = 0$ we have

$$2P'_{n}(\mu) = n(n+1)P_{n}(\mu),$$

so that

$$C_1 = 2A_1$$
, $D_1 = 2B_1$, $C'_1 = 2A'_1$, $D'_1 = 2B'_1$,

$$C_2 = 2A_2$$
, $D_2 = 2B_2$, $C'_2 = 2A'_2$, $D'_2 = 2B'_2$.

Numerical Summation of Series.

(By A. T. Doodson and G. Kennedy.)

3. The first step was to construct tables of

$$\log (2n+1) \operatorname{F}_n(\kappa \alpha)$$
 and $\log \frac{2n+1}{n(n+1)} \operatorname{F}_n(\kappa \alpha)$,

where $F_n(\kappa \alpha)$ takes each of the forms

$$\frac{\left|S_{n}(\kappa\alpha) C_{n}(\kappa\alpha)\right|}{\left|E_{n}(\kappa\alpha)\right|^{2}}, \qquad \frac{S_{n}^{2}(\kappa\alpha)}{\left|E_{n}(\kappa\alpha)\right|^{2}}, \qquad \frac{\left|S'_{n}(\kappa\alpha) C'_{n}(\kappa\alpha)\right|}{\left|E'_{n}(\kappa\alpha)\right|^{2}}, \qquad \frac{S'_{n}^{2}(\kappa\alpha)}{\left|E'_{n}(\kappa\alpha)\right|^{2}}.$$

This was done by means of the Brit. Assoc. tables* mentioned in § 1, using sevenfigure logarithms and afterwards reducing to five figures. To each of these was added $\log |P_n(\mu)|$ or $\log |P'_n(\mu)|$ for the same value of n, using five-figure logarithms.

* In these tables the values of $|E_n(9)|^2$ for n=13, 14 are misprinted; the decimal point requires moving one place to the left in each case. Care should be taken in using the logarithms, as some of the negative characteristics are printed without the sign placed over them.

Checks were devised to secure accurate addition, and no errors were afterwards discovered in this part of the work.

Tables* I. to VIII. were then constructed by taking anti-logarithms. This was a step the accuracy of which was not easily checked. The method used was to repeat the work with a different book of logarithms and under different conditions so as to avoid "repetition" errors. Only one or two errors were afterwards found in this part of the work. More errors were made in the summation of odd terms and of even terms of the series, the results of which are given at the feet of Tables I. to VIII. Only five or six, however, which escaped immediate detection by checking, were afterwards found in Table X. How these were detected will be described in the section on analysis of results. Except in the cases of $\kappa a = 1, 2$, one person computed A, B, C, D and the other A', B', C', D'. The final work of combining these functions was done separately by each and the results compared.

It has been the practice throughout the work to use more figures than were strictly necessary for the desired degree of accuracy. For example, many terms in the antilogarithms are given to six figures, though only five-figure logarithms were used. This was found conducive to speed and accuracy, but it is not intended that the tables should be regarded as accurate to the extent given, except when this is stated.

The final results for Y₁, Y₂, Z₁, Z₂ are probably accurate to at least three decimal places, while $Y_1^2 + Y_2^2$ and $Z_1^2 + Z_2^2$ can safely be given to four significant figures, as is done in the tables.

The derivatives c', d', c, d were computed similarly. The gradients are probably accurate to the order given in the tables.†

- * The reason that $\theta = 45^{\circ}$ has been taken where a regular sequence would require $\theta = 40^{\circ}$, 50° , appears from the account of the history of the work in § 1.
- † As stated at the end of § 1, these are not printed. The unprinted tables referring to this section are as follows:--

```
IX. giving \mathbf{A}_1 + \mu \mathbf{A'}_2 - \mathbf{C}_2, \mathbf{A}_2 + \mu \mathbf{A'}_1 - \mathbf{C'}_1, &c.
Table
                                                  terms of the series c.
                   XIII.
                                                                                              c'.
                   XIV.
                                                                                              d'.
                     XV.
                                                 \partial C'/\partial \mu, \partial D'/\partial \mu, &c.
                  XVI.
                XVII.
                                                 \partial Y_1/\partial \mu, \partial Y_2/\partial \mu, &c.
              XVIII.
                                                 \partial Y_1/\partial \theta, \partial Y_2/\partial \theta, &c.
                                                 \partial (\mathbf{Y}_1^2 + \mathbf{Y}_2^2)/\partial \theta, \partial (\mathbf{Z}_1^2 + \mathbf{Z}_2^2)/\partial \theta.
                  XIX.
```

TABLE I.

$$(-1)^n \cdot \frac{2n+1}{n(n+1)} \cdot \frac{S_n C_n}{|E_n|^2} \cdot P'_n$$
 $\kappa a = 10$.

n.	0°.	10°.	20°	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} +0.73176 \\ +1.22990 \\ +1.23766 \\ -0.07073 \\ -2.41068 \\ -2.33728 \\ +2.46520 \\ +2.51362 \\ -4.71857 \\ +3.44945 \\ -1.60550 \\ +0.53438 \\ -0.13345 \\ +0.02605 \\ -0.00413 \\ +0.00055 \\ -0.00066 \end{array}$	$\begin{array}{c} +0.73176 \\ +1.21121 \\ +1.19102 \\ -0.06598 \\ -2.16202 \\ -1.99807 \\ +1.99072 \\ +1.89911 \\ -3.30119 \\ +2.20968 \\ -0.93004 \\ +0.27604 \\ -0.06049 \\ +0.01017 \\ -0.00136 \\ +0.00015 \\ -0.00001 \end{array}$	$\begin{array}{c} +0.73176 \\ +1.15574 \\ +1.05670 \\ -0.05286 \\ -1.51029 \\ -1.16415 \\ +0.90966 \\ +0.61803 \\ -0.63448 \\ +0.13604 \\ +0.05779 \\ -0.04819 \\ +0.01642 \\ -0.00354 \\ +0.00054 \\ -0.00006 \\ +0.00001 \end{array}$	$\begin{array}{c} +0.73176 \\ +1.06512 \\ +0.85088 \\ -0.03445 \\ -0.69684 \\ -0.26883 \\ -0.04634 \\ -0.26095 \\ +0.65908 \\ -0.46030 \\ +0.15650 \\ -0.02496 \\ -0.00058 \\ +0.00015 \\ -0.00027 \\ +0.00004 \end{array}$	$\begin{array}{c} +0.73176 \\ +0.86968 \\ +0.46412 \\ -0.00625 \\ +0.22600 \\ +0.36153 \\ -0.29371 \\ -0.09373 \\ -0.18202 \\ +0.25607 \\ -0.10103 \\ +0.01156 \\ +0.00296 \\ -0.00118 \\ +0.00017 \\ -0.00001 \end{array}$	$\begin{array}{c} + 0.73176 \\ + 0.61495 \\ + 0.07735 \\ + 0.01105 \\ + 0.35783 \\ + 0.06391 \\ + 0.17394 \\ + 0.19362 \\ - 0.07589 \\ - 0.14533 \\ + 0.07855 \\ - 0.00581 \\ - 0.00383 \\ + 0.00090 \\ - 0.00003 \\ - 0.00001 \end{array}$	$\begin{array}{c} + 0 \cdot 73176 \\ + 0 \cdot 42065 \\ - 0 \cdot 12844 \\ + 0 \cdot 01319 \\ + 0 \cdot 10557 \\ - 0 \cdot 19408 \\ + 0 \cdot 18124 \\ - 0 \cdot 03380 \\ + 0 \cdot 27973 \\ - 0 \cdot 08707 \\ - 0 \cdot 04713 \\ + 0 \cdot 01987 \\ + 0 \cdot 00005 \\ - 0 \cdot 00078 \\ + 0 \cdot 00008 \\ + 0 \cdot 00001 \end{array}$	$\begin{array}{c} + 0.73176 \\ + 0.21357 \\ - 0.26277 \\ + 0.00856 \\ - 0.17988 \\ - 0.20929 \\ - 0.05268 \\ - 0.16560 \\ + 0.02119 \\ + 0.16063 \\ - 0.02813 \\ - 0.01627 \\ + 0.00310 \\ + 0.00045 \\ - 0.00010 \\ \end{array}$	$\begin{array}{c} +0.73176 \\ 0.00000 \\ -0.30941 \\ 0.00000 \\ -0.30134 \\ 0.00000 \\ -0.19259 \\ 0.00000 \\ -0.25805 \\ 0.00000 \\ +0.06585 \\ 0.00000 \\ -0.00430 \\ 0.00000 \\ +0.00011 \end{array}$
$egin{array}{c} A_1 \ A_2 \end{array}$	-4·43777 +5·34594	$-2.54161 \\ +3.54231$	+0.62811 +0.64101	+1:65419 +0:01 6 82	+ 0 · 84825 + 1 · 39767	+1·33968 +0·73328	+1·12286 +0·13799	+0·23249 -0·00795	- 0 · 26797 0 · 00000

TABLE II.

$$(-1)^n \cdot \frac{2n+1}{n(n+1)} \cdot \frac{S_n^2}{|E_n|^2} \cdot P'_n$$
. $\kappa \alpha = 10$.

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c} - 0 \cdot 91441 \\ + 1 \cdot 47323 \\ - 0 \cdot 51278 \\ + 4 \cdot 49904 \\ - 4 \cdot 42676 \\ + 0 \cdot 99175 \\ - 6 \cdot 57582 \\ + 7 \cdot 67697 \\ - 4 \cdot 20186 \\ + 1 \cdot 29223 \\ - 0 \cdot 22869 \\ + 0 \cdot 02289 \\ - 0 \cdot 00132 \\ + 0 \cdot 00001 \end{array}$	$\begin{array}{c} - & 0.91441 \\ + & 1.45086 \\ - & 0.49346 \\ + & 4.19691 \\ - & 1.27959 \\ + & 0.84781 \\ - & 5.31019 \\ + & 5.80016 \\ - & 2.93968 \\ + & 0.82779 \\ - & 0.13248 \\ + & 0.01182 \\ - & 0.00060 \\ + & 0.00002 \\ \end{array}$	$\begin{array}{c} -0.91441 \\ +1.38440 \\ -0.43780 \\ +3.36225 \\ -0.89386 \\ +0.49397 \\ -2.42650 \\ +1.88754 \\ -0.56500 \\ +0.05096 \\ +0.00823 \\ -0.00206 \\ +0.00016 \\ -0.00001 \end{array}$	$ \begin{array}{c} -0.91441 \\ +1.27585 \\ -0.35253 \\ +2.19164 \\ -0.41242 \\ +0.11407 \\ +0.12362 \\ -0.79697 \\ +0.58691 \\ -0.17244 \\ +0.02229 \\ -0.00107 \\ -0.00001 \end{array} $	$\begin{array}{c} -0.91441 \\ +1.04174 \\ -0.19229 \\ +0.39767 \\ +0.13376 \\ -0.15340 \\ +0.78345 \\ -0.28627 \\ -0.16208 \\ +0.09593 \\ -0.01439 \\ +0.00049 \\ +0.00003 \end{array}$	$\begin{array}{c} -0.91441 \\ +0.73661 \\ -0.03205 \\ -0.70298 \\ +0.21178 \\ -0.02712 \\ -0.46397 \\ +0.59133 \\ -0.06758 \\ -0.05444 \\ +0.01119 \\ -0.00025 \\ -0.00004 \\ \end{array}$	$\begin{array}{c} -0.91441 \\ +0.50387 \\ +0.05322 \\ -0.83907 \\ +0.06248 \\ +0.08235 \\ -0.48345 \\ -0.10325 \\ +0.24910 \\ -0.03262 \\ -0.00671 \\ +0.00085 \\ 0.00000 \end{array}$	$\begin{array}{c} -0.91441 \\ +0.25583 \\ +0.10887 \\ -0.54472 \\ -0.10646 \\ +0.08881 \\ +0.14051 \\ -0.50578 \\ +0.01887 \\ +0.06018 \\ -0.00401 \\ -0.00070 \\ +0.00003 \end{array}$	$ \begin{array}{c} -0.91441 \\ 0.00000 \\ +0.12820 \\ 0.00000 \\ -0.17835 \\ 0.00000 \\ +0.51374 \\ 0.00000 \\ -0.22979 \\ 0.00000 \\ +0.00938 \\ 0.00000 \\ -0.00000 \\ -0.00000 \end{array} $
$\begin{array}{c c} 17 \\ \hline B_1 \\ \hline \end{array}$	-13.86164	-11:07041	-5.22918	-0.94655	-0.36593	-1.25508	-1:03977	-0.75660	-0.67127
B_2	+15.95612	+13.13537	+7.17705	+2.61108	+1.09616	+0.54315	-0.38787	-0.64638	0.00000

TABLE III.

$$(-1)^n \frac{2n+1}{n(n+1)} \cdot \frac{S'_n C'_n}{|E'_n|^2} \cdot P'_n$$
. $\kappa \alpha = 10$.

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} -0.73208 \\ -1.22846 \\ -1.22031 \\ +0.13013 \\ +2.47053 \\ +2.14057 \\ -2.86418 \\ -1.41534 \\ +4.16121 \\ -4.59928 \\ +2.69718 \\ -0.79823 \\ +0.17486 \\ -0.03159 \\ +0.00479 \\ -0.00062 \\ +0.00007 \end{array}$	$\begin{array}{c} -0.73208 \\ -1.20979 \\ -1.17433 \\ +0.12139 \\ +2.21569 \\ +1.82991 \\ -2.31292 \\ -1.06933 \\ +2.91125 \\ -2.94625 \\ +1.56243 \\ -0.41233 \\ +0.07926 \\ -0.01233 \\ +0.00157 \\ -0.00017 \\ +0.00001 \end{array}$	$\begin{array}{c} -0.73208 \\ -1.15438 \\ -1.04189 \\ +0.09725 \\ +1.54778 \\ +1.06618 \\ -1.05689 \\ -0.34799 \\ +0.55954 \\ -0.18138 \\ -0.09709 \\ +0.07199 \\ -0.02152 \\ +0.00430 \\ -0.00063 \\ +0.00007 \\ -0.00001 \end{array}$	$\begin{array}{c} -0.73208 \\ -1.06387 \\ -0.83896 \\ +0.06339 \\ +0.71413 \\ +0.24621 \\ +0.05384 \\ +0.14693 \\ -0.58123 \\ +0.61373 \\ -0.26291 \\ +0.03728 \\ +0.00076 \\ -0.00140 \\ +0.00032 \\ -0.00004 \\ \end{array}$	$\begin{array}{c} -0.73208 \\ -0.86866 \\ -0.45761 \\ +0.01150 \\ -0.23161 \\ -0.33110 \\ +0.34124 \\ +0.05278 \\ +0.16052 \\ -0.34142 \\ +0.16973 \\ -0.01726 \\ -0.00387 \\ +0.00144 \\ -0.00019 \\ +0.00001 \end{array}$	$\begin{array}{c} -0.73208 \\ -0.61423 \\ -0.07627 \\ -0.02033 \\ -0.36672 \\ -0.05853 \\ -0.20209 \\ -0.10902 \\ +0.06692 \\ +0.13196 \\ +0.00868 \\ +0.00502 \\ -0.00109 \\ +0.00004 \\ +0.00001 \end{array}$	$\begin{array}{c} -0.73208 \\ -0.42016 \\ +0.12664 \\ -0.02427 \\ -0.10819 \\ +0.17774 \\ -0.21057 \\ +0.01903 \\ -0.24669 \\ +0.11609 \\ +0.07918 \\ -0.02968 \\ -0.00006 \\ +0.00095 \\ -0.00009 \\ -0.00001 \\ \end{array}$	$\begin{array}{c} -0.73208 \\ -0.21332 \\ +0.25908 \\ -0.01576 \\ +0.18434 \\ +0.19168 \\ +0.06120 \\ +0.09325 \\ -0.01869 \\ -0.21418 \\ +0.04725 \\ +0.02430 \\ -0.00406 \\ -0.00054 \\ +0.00012 \\ +0.00000 \end{array}$	$\begin{array}{c} -0.73208 \\ 0.00000 \\ +0.30508 \\ 0.00000 \\ +0.30882 \\ 0.00000 \\ +0.22376 \\ 0.00000 \\ +0.22756 \\ 0.00000 \\ -0.11063 \\ 0.00000 \\ +0.00564 \\ 0.00000 \\ -0.00013 \\ 0.00000 \end{array}$
$\begin{bmatrix} A'_1 \\ A'_2 \end{bmatrix}$	$+4.69207 \\ -5.80282$	$+2.55088 \\ -3.69890$	- 0 · 84279 - 0 · 4439 6	-1.64613 + 0.04223	$-0.75387 \\ -1.49271$	-1·43714 -0·60074	-1·09186 -0·16031	$-0.20284 \\ -0.13457$	+0·22802 0·00000

TABLE IV.

$$(-1)^n \frac{2n+1}{n(n+1)} \cdot \frac{S'_n{}^2P'_n}{|E'_n|^2}$$
. $\kappa a = 10$.

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c} - & 0.58704 \\ + & 1.01895 \\ - & 3.00442 \\ + & 0.00376 \\ - & 3.95795 \\ + & 5.69547 \\ - & 1.32944 \\ + & 0.24259 \\ - & 2.45947 \\ + & 2.71838 \\ - & 0.67180 \\ + & 0.05118 \\ - & 0.00227 \\ + & 0.00007 \\ \end{array}$	$\begin{array}{c} - & 0.58704 \\ + & 1.00346 \\ - & 2.89121 \\ + & 0.00351 \\ - & 3.54969 \\ + & 4.86889 \\ - & 1.07357 \\ + & 0.18329 \\ - & 1.72068 \\ + & 1.74137 \\ - & 0.38916 \\ + & 0.02644 \\ - & 0.00103 \\ + & 0.00003 \\ \end{array}$	$\begin{array}{c} -0.58704 \\ +0.95750 \\ -2.56513 \\ +0.00281 \\ -2.47965 \\ +2.83681 \\ -0.49057 \\ +0.05965 \\ -0.33071 \\ +0.10721 \\ +0.02418 \\ -0.00462 \\ +0.00028 \\ -0.00001 \end{array}$	$\begin{array}{c} -0.58704 \\ +0.88243 \\ -2.06552 \\ +0.00183 \\ -1.14409 \\ +0.65509 \\ +0.02499 \\ -0.02518 \\ +0.34353 \\ -0.36274 \\ +0.06548 \\ -0.00239 \\ -0.00001 \end{array}$	$\begin{array}{c} -0.58704 \\ +0.72051 \\ -1.12665 \\ +0.00033 \\ +0.37106 \\ -0.88097 \\ +0.15839 \\ -0.00905 \\ -0.09487 \\ +0.20179 \\ -0.04227 \\ +0.00111 \\ +0.00005 \end{array}$	$\begin{array}{c} -0.58704 \\ +0.50947 \\ -0.18778 \\ -0.00059 \\ +0.58750 \\ -0.15574 \\ -0.09380 \\ +0.01869 \\ -0.03955 \\ -0.11452 \\ +0.03287 \\ -0.00056 \\ -0.00007 \end{array}$	$\begin{array}{c} -0.58704 \\ +0.34850 \\ +0.31180 \\ -0.00070 \\ +0.17332 \\ +0.47292 \\ -0.09774 \\ -0.00326 \\ +0.14580 \\ -0.06862 \\ -0.01972 \\ +0.00190 \\ 0.00000 \end{array}$	$\begin{array}{c} -0.58704 \\ +0.17694 \\ +0.63787 \\ -0.00046 \\ -0.29533 \\ +0.51000 \\ +0.02841 \\ -0.01598 \\ +0.01104 \\ +0.12659 \\ -0.01177 \\ -0.00156 \\ +0.00005 \end{array}$	$\begin{array}{c} -0.58704 \\ 0.00000 \\ +0.75109 \\ 0.00000 \\ -0.49473 \\ 0.00000 \\ +0.10386 \\ 0.00000 \\ -0.13450 \\ 0.00000 \\ +0.02755 \\ 0.00000 \\ -0.00007 \\ \end{array}$
	: 1	-10.21238 + 7.82699	$ \begin{array}{r} -6.42864 \\ +3.96398 \end{array} $	- 3·3 6 266 + 1·14904	$-1 \cdot 32133 + 0 \cdot 03372$	-0.28787 + 0.25675	-0.07358 + 0.75074	-0.21677 + 0.79553	-0·33384 0·00000

TABLE V. $(-1)^n \cdot (2n+1) \cdot \frac{S_n C_n}{|E_n|^2} \cdot P_n$. $\kappa \alpha = 10$.

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17		$\begin{array}{c} +1\cdot 44129 \\ +2\cdot 34855 \\ +2\cdot 25393 \\ -0\cdot 12069 \\ -3\cdot 77990 \\ -3\cdot 29306 \\ +3\cdot 03927 \\ +2\cdot 62343 \\ -3\cdot 99003 \\ +2\cdot 21758 \\ -0\cdot 70633 \\ +0\cdot 12885 \\ -0\cdot 00675 \\ -0\cdot 00333 \\ +0\cdot 0120 \\ -0\cdot 00024 \\ +0\cdot 00003 \end{array}$	$\begin{array}{c} +1 \cdot 37528 \\ +2 \cdot 02820 \\ +1 \cdot 64581 \\ -0 \cdot 06719 \\ -1 \cdot 30897 \\ -0 \cdot 33612 \\ -0 \cdot 52867 \\ -1 \cdot 26605 \\ +3 \cdot 31902 \\ -2 \cdot 76834 \\ +1 \cdot 28484 \\ -0 \cdot 37711 \\ +0 \cdot 07160 \\ -0 \cdot 00826 \\ +0 \cdot 00031 \\ +0 \cdot 00009 \\ -0 \cdot 00002 \end{array}$	$\begin{array}{c} +1\cdot 26745\\ +1\cdot 53738\\ +0\cdot 80388\\ -0\cdot 00332\\ +1\cdot 07647\\ +1\cdot 74840\\ -2\cdot 02232\\ -1\cdot 70310\\ +1\cdot 78904\\ -0\cdot 04856\\ -0\cdot 51602\\ +0\cdot 29199\\ -0\cdot 08184\\ +0\cdot 01347\\ -0\cdot 00121\\ +0\cdot 00000\\ +0\cdot 00002\\ \end{array}$	$\begin{array}{c} +1 \cdot 03488 \\ +0 \cdot 61495 \\ -0 \cdot 43759 \\ +0 \cdot 05747 \\ +1 \cdot 81113 \\ +0 \cdot 69388 \\ +0 \cdot 62644 \\ +1 \cdot 49982 \\ -2 \cdot 69464 \\ +0 \cdot 79415 \\ +0 \cdot 33453 \\ -0 \cdot 26368 \\ +0 \cdot 06388 \\ -0 \cdot 00507 \\ -0 \cdot 00075 \\ +0 \cdot 00024 \\ -0 \cdot 00003 \end{array}$	$\begin{array}{c} +0.73176 \\ -0.30748 \\ -1.08295 \\ +0.04089 \\ -0.43317 \\ -1.51102 \\ +1.10020 \\ -0.37020 \\ +2.52819 \\ -1.29858 \\ -0.20509 \\ +0.24983 \\ -0.04425 \\ -0.00298 \\ +0.00173 \\ -0.00016 \\ -0.00001 \end{array}$	$\begin{array}{c} +0.50055 \\ -0.79829 \\ -1.02233 \\ +0.00054 \\ -1.58172 \\ -0.97641 \\ -0.73228 \\ -1.39766 \\ +0.44907 \\ +1.51386 \\ -0.59867 \\ -0.08421 \\ +0.05977 \\ -0.00388 \\ -0.00132 \\ +0.00019 \end{array}$	$\begin{array}{c} +0.25414 \\ -1.11864 \\ -0.61235 \\ -0.03761 \\ -1.35488 \\ +0.61760 \\ -1.39765 \\ +0.11718 \\ -2.45014 \\ +0.44623 \\ +0.68905 \\ -0.13970 \\ -0.04122 \\ +0.00902 \\ +0.00071 \\ -0.00021 \\ \end{array}$	$\begin{matrix} 0.00000\\ -1.22990\\ 0.00000\\ -0.05305\\ 0.00000\\ +1.46080\\ 0.00000\\ +1.37465\\ 0.00000\\ -1.69780\\ 0.00000\\ +0.24110\\ 0.00000\\ -0.01091\\ 0.00000\\ +0.00000\\ +0.00000\\ -0.00000\\ +0.00000\\ -0.00000\\ +0.000000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.000000\\ -0.000000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000000\\ -0.0000000\\ -0.00000000\\ -0.0000000000$
$egin{array}{c} \mathbf{C_1} \\ \mathbf{C_2} \end{array}$	-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} +5.85920 \\ -2.79478 \end{array} $	+2·31547 +1·83626	+0.73785 +3.39176	$\begin{array}{c} +2.59641 \\ -3.19970 \end{array}$	$-2 \cdot 92693 \\ -1 \cdot 74586$	-4·91234 -0·10613	0·00000 +0·08511

TABLE VI.

$$(-1)^n (2n+1) \cdot \frac{S_n^2}{|E_n|^2} \cdot P_n$$
. $\kappa a = 10$.

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	,	- 1·80103 + 2·81320 - 0·93383 + 7·67733 - 2·23712 + 1·39730 - 8·10718 + 8·01235 - 3·55304 + 0·83075 - 0·10061 + 0·00552 - 0·00007 - 0·00001	$\begin{array}{c} -1 \cdot 71854 \\ +2 \cdot 42946 \\ -0 \cdot 68188 \\ +4 \cdot 27386 \\ -0 \cdot 77471 \\ +0 \cdot 14262 \\ +1 \cdot 41020 \\ -3 \cdot 86670 \\ +2 \cdot 95556 \\ -1 \cdot 03705 \\ +0 \cdot 18302 \\ -0 \cdot 01615 \\ +0 \cdot 000071 \\ -0 \cdot 00001 \\ \end{array}$	$\begin{array}{c} -1.58380 \\ +1.84154 \\ -0.33306 \\ +0.21089 \\ +0.63710 \\ -0.74187 \\ +5.39448 \\ -5.20152 \\ +1.59313 \\ -0.01819 \\ -0.07350 \\ +0.01251 \\ -0.00081 \\ +0.00002 \end{array}$	$\begin{array}{c} -1 \cdot 29318 \\ +0 \cdot 73662 \\ +0 \cdot 18130 \\ -3 \cdot 65545 \\ +1 \cdot 07192 \\ -0 \cdot 29442 \\ -1 \cdot 67101 \\ +4 \cdot 58070 \\ -2 \cdot 39955 \\ +0 \cdot 29750 \\ +0 \cdot 04765 \\ -0 \cdot 01129 \\ +0 \cdot 00063 \\ -0 \cdot 00001 \\ \end{array}$	$\begin{array}{c} -0 \cdot 91441 \\ -0 \cdot 36831 \\ +0 \cdot 44868 \\ -2 \cdot 60100 \\ -0 \cdot 25637 \\ +0 \cdot 64115 \\ -2 \cdot 93474 \\ -1 \cdot 13066 \\ +2 \cdot 25133 \\ -0 \cdot 48648 \\ -0 \cdot 02921 \\ +0 \cdot 01070 \\ -0 \cdot 00044 \\ -0 \cdot 00001 \\ \end{array}$	$\begin{array}{c} -0.62549 \\ -0.95622 \\ +0.42356 \\ -0.03419 \\ -0.93614 \\ +0.41430 \\ +1.95346 \\ -4.26866 \\ +0.39989 \\ +0.56675 \\ -0.08527 \\ -0.00361 \\ +0.00059 \\ -0.00001 \\ \end{array}$	$\begin{array}{c} -0.31757 \\ -1.33995 \\ +0.25371 \\ +2.39260 \\ -0.80188 \\ -0.26206 \\ +3.72821 \\ +0.35787 \\ -2.18183 \\ +0.16717 \\ +0.09815 \\ -0.00598 \\ -0.00041 \\ +0.00002 \\ \end{array}$	$\begin{array}{c} 0\cdot00000\\ -1\cdot47323\\ 0\cdot00000\\ +3\cdot37430\\ 0\cdot00000\\ -0\cdot61984\\ 0\cdot00000\\ +4\cdot19840\\ 0\cdot00000\\ -0\cdot63602\\ 0\cdot00000\\ +0\cdot01033\\ 0\cdot00000\\ -0\cdot00000\\ -0\cdot00000\\ -0\cdot00000\\ \end{array}$
$egin{array}{c} D_1 \ D_2 \end{array}$,	$ \begin{array}{r} -16.73288 \\ +20.73644 \end{array} $	+1·37436 +1·92603	$+5.63354 \\ -3.89662$	$ \begin{array}{r} -4.06224 \\ +1.65365 \end{array} $	$-1.43516 \\ -3.93461$	+1·13060 -4·28164	+ 0 · 77838 + 1 · 30967	0.00000 + 4.85392

Note.—The gaps in Tables V. to VIII. corresponding to $\theta = 0$ are left owing to the fact that the entries would be just double the corresponding entries in Tables I. to IV. respectively, as is shown at the end of § 2.

TABLE VII. $(-1)^n \cdot (2n+1) \cdot \frac{S'_n C'_n}{|E'_n|^2} \cdot P_n$. $\kappa \alpha = 10$.

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		$\begin{array}{c} -1 \cdot 44192 \\ -2 \cdot 34579 \\ -2 \cdot 22234 \\ +0 \cdot 22206 \\ +3 \cdot 87374 \\ +3 \cdot 01592 \\ -3 \cdot 53118 \\ -1 \cdot 47717 \\ +3 \cdot 51868 \\ -2 \cdot 95679 \\ +1 \cdot 18662 \\ -0 \cdot 19247 \\ +0 \cdot 00884 \\ +0 \cdot 00404 \\ -0 \cdot 00139 \\ +0 \cdot 00027 \\ \end{array}$	$\begin{array}{c} -1 \cdot 37588 \\ -2 \cdot 02582 \\ -1 \cdot 62274 \\ +0 \cdot 12362 \\ +1 \cdot 34147 \\ +0 \cdot 30783 \\ +0 \cdot 61423 \\ +0 \cdot 71287 \\ -2 \cdot 92698 \\ +3 \cdot 69114 \\ -2 \cdot 15849 \\ +0 \cdot 56331 \\ -0 \cdot 09382 \\ +0 \cdot 01002 \\ -0 \cdot 00036 \\ -0 \cdot 00010 \\ \end{array}$	$\begin{array}{c} -1 \cdot 26800 \\ -1 \cdot 53557 \\ -0 \cdot 79261 \\ +0 \cdot 00610 \\ -1 \cdot 10319 \\ -1 \cdot 60125 \\ +2 \cdot 34963 \\ +0 \cdot 95896 \\ -1 \cdot 57772 \\ +0 \cdot 06474 \\ +0 \cdot 86690 \\ -0 \cdot 43616 \\ +0 \cdot 10725 \\ -0 \cdot 01633 \\ +0 \cdot 00141 \\ -0 \cdot 00000 \end{array}$	$\begin{array}{c} -1 \cdot 03533 \\ -0 \cdot 61423 \\ +0 \cdot 43145 \\ -0 \cdot 10573 \\ -1 \cdot 85609 \\ -0 \cdot 63548 \\ -0 \cdot 72783 \\ -0 \cdot 84450 \\ +2 \cdot 37635 \\ -1 \cdot 05886 \\ -0 \cdot 56200 \\ +0 \cdot 39388 \\ -0 \cdot 08670 \\ +0 \cdot 00615 \\ +0 \cdot 00087 \\ -0 \cdot 00027 \\ \end{array}$	$\begin{array}{c} -0.73208 \\ +0.30711 \\ +1.06778 \\ -0.07523 \\ +0.44393 \\ +1.38385 \\ -1.27826 \\ +0.20845 \\ -2.22956 \\ +1.73145 \\ +0.34455 \\ -0.37318 \\ +0.05799 \\ +0.00361 \\ -0.00201 \\ +0.00019 \\ \end{array}$	$\begin{array}{c} -0.50077 \\ +0.79735 \\ +1.00800 \\ -0.00099 \\ +1.62098 \\ +0.89423 \\ +0.85080 \\ +0.78697 \\ -0.39602 \\ -2.01716 \\ +1.00575 \\ +0.12579 \\ -0.07831 \\ +0.00471 \\ +0.00153 \\ -0.00022 \\ \end{array}$	$\begin{array}{c} -0.25425 \\ +1.11733 \\ +0.60377 \\ +0.06921 \\ +1.38851 \\ -0.56563 \\ +1.62387 \\ -0.06598 \\ +2.16073 \\ -0.59498 \\ -1.15752 \\ +0.20867 \\ +0.05401 \\ -0.01094 \\ -0.00082 \\ +0.00024 \\ \end{array}$	$\begin{array}{c} 0.00000\\ +1.22848\\ 0.00000\\ +0.09760\\ 0.00000\\ -1.33786\\ 0.00000\\ -0.77403\\ 0.00000\\ +2.26371\\ 0.00000\\ -0.36014\\ 0.00000\\ +0.01323\\ 0.00000\\ -0.00024 \end{array}$
C' ₁ C' ₂	1	$ \begin{array}{c} -0.00004 \\ +1.39101 \\ -3.72993 \end{array} $	+0.00002 -6.22255 $+3.38287$	-0.00002 -1.41635 -2.55951	+0.00003 -1.45925 -2.85904	+0.00001 -2.32765 $+3.18625$	-0.00000 $+3.51196$ $+0.59068$	-0.00000 $+4.41830$ $+0.15792$	$ \begin{array}{c} 0.00000 \\\\ 0.00000 \\ +1.13075 \end{array} $

TABLE VIII.

$$(-1)^n \cdot (2n+1) \cdot \frac{(S'_n)^2}{|E'_n|^2} \cdot P_n$$
. $\kappa \alpha = 10$

n.	0°.	10°.	20°.	30°.	45°.	60°.	70°.	80°.	90°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		$\begin{array}{c} - \ 1 \cdot 15625 \\ + \ 1 \cdot 94572 \\ - \ 5 \cdot 47142 \\ + \ 0 \cdot 00643 \\ - \ 6 \cdot 20597 \\ + \ 8 \cdot 02454 \\ - \ 1 \cdot 63904 \\ + \ 0 \cdot 25319 \\ - \ 2 \cdot 07970 \\ + \ 1 \cdot 74759 \\ - \ 0 \cdot 29624 \\ + \ 0 \cdot 01234 \\ - \ 0 \cdot 00011 \\ - \ 0 \cdot 00001 \end{array}$	$\begin{array}{c} -1 \cdot 10329 \\ +1 \cdot 68031 \\ -3 \cdot 99521 \\ +0 \cdot 00358 \\ -2 \cdot 14912 \\ +0 \cdot 81905 \\ +0 \cdot 28510 \\ -0 \cdot 12219 \\ +1 \cdot 72998 \\ -2 \cdot 18162 \\ +0 \cdot 53763 \\ -0 \cdot 03612 \\ +0 \cdot 00122 \\ -0 \cdot 00002 \end{array}$	$\begin{array}{c} -1 \cdot 01679 \\ +1 \cdot 27368 \\ -1 \cdot 95142 \\ +0 \cdot 00018 \\ +1 \cdot 76738 \\ -4 \cdot 26049 \\ +1 \cdot 09061 \\ -0 \cdot 16437 \\ +0 \cdot 93250 \\ -0 \cdot 03826 \\ -0 \cdot 21592 \\ +0 \cdot 02797 \\ -0 \cdot 00139 \\ +0 \cdot 00004 \\ \end{array}$	$\begin{array}{c} -0.83021 \\ +0.50947 \\ +1.06223 \\ -0.00306 \\ +2.97358 \\ -1.69083 \\ -0.33783 \\ +0.14475 \\ -1.40453 \\ +0.62584 \\ +0.13998 \\ -0.02526 \\ +0.00108 \\ -0.00001 \end{array}$	$\begin{array}{c} -0.58704 \\ -0.25474 \\ +2.62888 \\ -0.00218 \\ -0.71120 \\ +3.68205 \\ -0.59332 \\ -0.03573 \\ +1.31777 \\ -1.02336 \\ -0.08582 \\ +0.02393 \\ -0.00075 \\ +0.00001 \\ \end{array}$	$\begin{array}{c} -0.40156 \\ -0.66136 \\ +2.48170 \\ -0.00003 \\ -2.59693 \\ +2.37930 \\ +0.39491 \\ -0.13489 \\ +0.23407 \\ +1.19223 \\ -0.25051 \\ -0.00807 \\ +0.00101 \\ -0.00001 \end{array}$	$\begin{array}{c} -0\cdot20388 \\ -0\cdot92677 \\ +1\cdot48648 \\ +0\cdot00200 \\ -2\cdot22449 \\ -1\cdot50498 \\ +0\cdot75374 \\ +0\cdot01131 \\ -1\cdot27709 \\ +0\cdot35166 \\ +0\cdot28831 \\ -0\cdot01338 \\ -0\cdot00070 \\ +0\cdot00002 \\ \end{array}$	$ \begin{array}{c} 0 \cdot 00000 \\ -1 \cdot 01895 \\ 0 \cdot 00000 \\ +0 \cdot 00282 \\ 0 \cdot 00000 \\ -3 \cdot 55967 \\ 0 \cdot 00000 \\ +0 \cdot 13267 \\ 0 \cdot 00000 \\ -1 \cdot 33795 \\ 0 \cdot 00000 \\ +0 \cdot 02309 \\ 0 \cdot 00000 \\ -0 \cdot 00003 \\ \end{array} $
D'_1 D'_2 .		$-16 \cdot 84873 + 11 \cdot 98980$	-4.69369 + 0.16299	+0.60497 -3.16125	+1:60430 -0:43910	+1·96852 +2·38996	-0.13731 + 2.76717	$-1 \cdot 17763 \\ -2 \cdot 08014$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note.—The gaps in Tables V. to VIII. corresponding to $\theta = 0$ are left owing to the fact that the entries would be just double the corresponding entries in Tables I. to IV. respectively, as is shown at the end of § 2.

TABLE X.

 θ. 0 10 20 30 45 	Y ₁ . -0.87964 -0.87409	Y ₂ .	Z_1 .	Z_2 .				
0 10 20 30 45	-0.87409			22.	Y_1 .	Y ₂ .	Z_1 .	Z_2 .
10 20 30 45	-0.87409	+0.36828	+0.87964	-0.36828	-0.01686	-1.00392	+0.01686	+1.00392
20 30 45		+0.36177	+0.87833	-0.36931	-0.05133	-0.97319	+0.03713	+0.98979
30 4 5	-0.85739	+0.34240	+0.87421	-0.37235	-0.15388	-0.88511	+0.09780	+0.94713
	-0.82898	+0.31068	+0.86695	$\begin{bmatrix} -0.37235 \\ -0.37735 \end{bmatrix}$	-0.32775	-0.75189	+0.19180	+0.87470
	-0.76305	+0.24213	+0.84886	-0.38814	-0.67558	-0.50959	+0.41394	+0.70713
60	-0.66730	+0.15213	+0.82006	-0.40234	$ -1 \cdot 10637$	-0.28864	+0.68944	+0.46459
70	-0.58650	+0.08407	+0.79396	-0.41326	$ -1\cdot 39254 $	-0.19417	+0.88593	+0.26063
80	-0.49274	+0.01031	+0.76198	-0.42497	-1.63685	-0.16609	+1.07223	+0.02454
90	-0.38750	-0.06572	+0.72430	-0.43714	-1.80040	-0.21751	+1.22758	-0.23984
100	-0.27326	-0.14203	+0.68166	-0.44941	-1.84751	-0.35271	+1.33131	-0.52610
110	-0.15360	-0.21597	+0.63534	-0.46136	-1.75394	-0.56577	+1.36711	-0.82519
120	-0.03310	-0.28649	+0.58728	-0.47266	-1.5334	-0.84086	+1.32726	-1.12573
135	+0.13733	-0.37819	+0.51714	-0.48762	-0.93146	-1.31449	+1.14028	-1.54979
150	+0.27800	-0.44904	+0.45767	-0.49917	-0.23151	-1.76695	+0.86400	-1.89896
160	+0:34623	-0.48198	+0.42835	-0.50453	+0.16600	-2.00347	+0.70070	-2.06803
170	+0.38897	-0.50215	+0.40985	-0.50783	+0.44169	-2.15677	+0.58211	-2.17383
180	+0.40352	-0.50896	+0.40352	-0.20896	+0.53950	$ -2\cdot 20986$	+0.53950	-2.50986
		ка :	= 9.			. ка	= 10.	
θ.	Y ₁ .	Y ₂ .	Z_1 .	Z_2 .	Y ₁ .	Y_2 .	Z_1 .	Z_2 .
0								
0	+2.92118	- 2.92969	-2.92118	+ 2.92969	+2.0189	+ 4.3765	-2.0189	- 4.3765
10	+2.85178	-3.44035	-2.74647	$\begin{vmatrix} + & 2 & 32303 \\ + & 3 \cdot 25040 \end{vmatrix}$	+2.2090	+ 4.5747	-2.3163	-4.3554
20	+2.39601	-4.21198	-2.11542	+ 3.96256	+2.8996	+ 4.1626	-3.1586	-3.9348
30	+0.93972	-4.34162	-0.77288	+ 4.50196	+4.2579	+ 2.3038	-4.3085	-2.5090
45	-2.79263	- 3.71421	+2.55340	+ 3.69379	+4.9757	- 1:3455	-4.7881	+ 1.6373
60	-4·11873	- 0.09190	+4.54564			- 5.0860	-0.3981	+ 4.9827
60	-4.11873 -2.65205	+ 3.87786	$+4.54564 \\ +2.71046$	- 0.28764	$ \begin{array}{r} +0.1954 \\ -3.2701 \end{array} $	-3.8259	+3.8519	+ 4.9827
70 80	+0.44242	+ 4.55372	-1.41433	$\begin{vmatrix} - & 3 \cdot 61300 \\ + & 4 \cdot 42270 \end{vmatrix}$	-3.2701 -4.4103	+ 1.9553	+4.7201	-1.7529
	+4.07803	+ 0.45069	-4.49231	- 0.87232	-1:3987	+ 5.0868	+0.1429	- 5.1878
	+3.98050	- 3.34098	-2.63233	+ 3.98232	+4.5127	+ 0.9681	-4.9162	- 1.5245
	-2.08115	- 2.44198	+2.93266	+ 3.77514	+4.2248	- 3.2744	-2.4495	+ 4.8109
120	-5.97919	+ 0.37778	+4.53082	- 2.25240	-4.4893	- 1.9474	+4.6565	+ 2.8540
135	+4.89401	+ 2.22161	-4.61842	- 2.86833	+0.3279	+ 1.5395	-1.5266	- 6.0371
	+0.17682	+ 1.81954	+0.68260	+ 7.60056	+4.2427	+ 4.1158	$-2 \cdot 6272$	+ 8.0995
160	$-9 \cdot 31245$	-10.01990	+8.06560	- 3.40086	-9.2435	-7.4971	+8.2673	+ 0.7136
	$-5 \cdot 30982$		+5.13925	$-28 \cdot 36546$	$-7 \cdot 1178$	$-35 \cdot 2790$	+6.5929	-31.6707
	+0.74010	-41.89187	+0.74010	-41.89187	+0.7111	-51.5606	+0.7111	-51.5606

TABLE XI.

θ .	ка :	= 1.	ка =	= 2.	ка	= 9.	ка =	= 10.
0.	$Y_1^2 + Y_2^2$.	$Z_1^2 + Z_2^2$.	$Y_1^2 + Y_2^2$.	$Z_1^2 + Z_2^2$.	$Y_1^2 + Y_2^2$.	$Z_1^2 + Z_2^2$.	$Y_1^2 + Y_2^2$.	$Z_1^2 + Z_2^2$.
0 10 20	$0.9094 \\ 0.8949 \\ 0.8524$	$0.9094 \\ 0.9079 \\ 0.9029$	$ \begin{array}{c c} 1.0081 \\ 0.9497 \\ 0.8071 \end{array} $	1·0081 0·9811 0·9066	$ \begin{array}{ c c c c } \hline 17.12 \\ 19.97 \\ 23.48 \end{array} $	17·12 18·11 20·18	$23 \cdot 23$ $25 \cdot 81$ $25 \cdot 74$	$\begin{array}{c c} 23 \cdot 23 \\ 24 \cdot 33 \\ 25 \cdot 46 \end{array}$
30 45	$0.7837 \\ 0.6409$	$0.8940 \\ 0.8712$	$0.6728 \\ 0.7161$	0.8019 0.6714	19.73 21.59	20.86 20.16	$23 \cdot 44 \\ 26 \cdot 57$	24·86 25·61
60 70 80	$0.4684 \\ 0.3511 \\ 0.2429$	$0.8344 \\ 0.8012 \\ 0.7612$	$ \begin{array}{ c c c c c } \hline 1 \cdot 3074 \\ 1 \cdot 9769 \\ 2 \cdot 7069 \end{array} $	$0.6912 \\ 0.8528 \\ 1.1503$	$\begin{array}{ c c c c }\hline 16 \cdot 97 \\ 22 \cdot 07 \\ 20 \cdot 93 \\\hline \end{array}$	$20.75 \\ 20.40 \\ 21.56$	$\begin{array}{ c c c } 25 \cdot 91 \\ 25 \cdot 33 \\ 23 \cdot 27 \end{array}$	$24 \cdot 99 \ 25 \cdot 99 \ 25 \cdot 35$
.90	0.1545	0.7157	3 · 2887	1.5645	16.83	20.94	27.83	26.93
100 110 120	$0.0948 \\ 0.0702 \\ 0.0832$	0.6666 0.6165 0.5683	3.5377 3.3964 3.0005	$2 \cdot 0492$ $2 \cdot 5499$ $3 \cdot 0289$	$27 \cdot 01$ $10 \cdot 29$ $35 \cdot 89$	$22 \cdot 79$ $22 \cdot 85$ $25 \cdot 60$	$21 \cdot 30$ $28 \cdot 57$ $23 \cdot 95$	$26 \cdot 49$ $29 \cdot 14$ $29 \cdot 83$
135	0.1619	0.5052	2.5955	$3 \cdot 7021$	28.89	29.56	2 · 48	38.78
150 160 170 180	$0.2789 \\ 0.3522 \\ 0.4035 \\ 0.4219$	$0.4586 \\ 0.4380 \\ 0.4259 \\ 0.4219$	$egin{array}{cccc} 3 \cdot 1757 \\ 4 \cdot 0415 \\ 4 \cdot 8467 \\ 5 \cdot 1745 \\ \end{array}$	$egin{array}{cccc} 4 \cdot 3525 & & & & \\ 4 \cdot 7677 & & & & \\ 5 \cdot 0644 & & & \\ 5 \cdot 1745 & & & & \\ \end{array}$	$ \begin{array}{r} 3 \cdot 34 \\ 187 \cdot 1 \\ 979 \cdot 7 \\ 1755 \end{array} $	$58 \cdot 23 \\ 76 \cdot 62 \\ 831 \cdot 0 \\ 1755$	$ \begin{array}{r} 34 \cdot 94 \\ 141 \cdot 65 \\ 1295 \\ 2659 \end{array} $	72.50 68.87 1046 2659

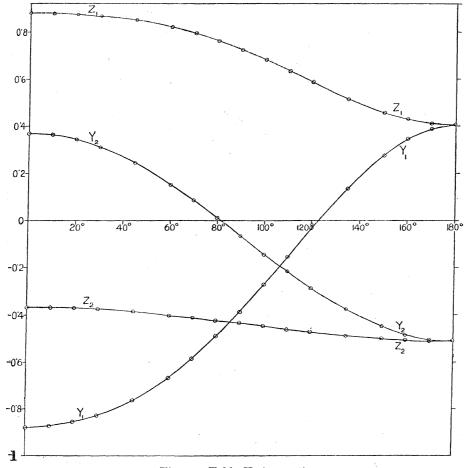


Fig. 1. Table X. ($\kappa a = 1$).

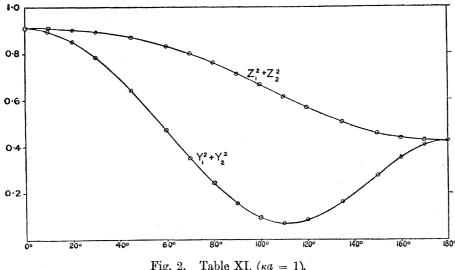


Fig. 2. Table XI. ($\kappa a = 1$).

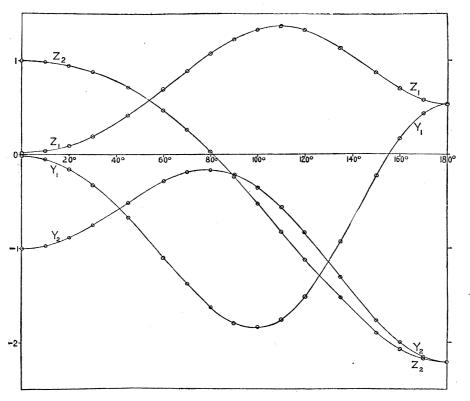
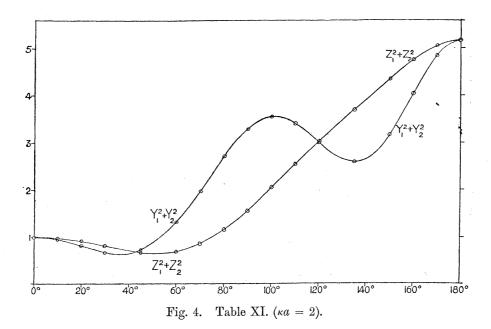



Fig. 3. Table X. $(\kappa a = 2)$.

Analysis of Results and Interpolation.

4. A consideration of the results tabulated up to this point shows that for $\kappa \alpha = 9$, 10, they are not adequate for the complete representation of $Y_1^2 + Y_2^2$, $Z_1^2 + Z_2^2$ throughout the range of θ . Owing to the excessive labour involved in further computations from the original series, other methods were tried. The following sections are devoted to the discussion and presentation of this work.

For values of θ , except those "near" 180°, the first approximation for large values of $\kappa \alpha$, gives

$$Y_{1} = -Z_{1} = \frac{1}{2}\kappa a \cos \theta,$$

$$Y_{2} = -Z_{2} = \frac{1}{2}\kappa a \sin \theta,$$

$$\Theta = 2\kappa a \cos \frac{1}{2} \theta.$$

$$(10)$$

where

Consider then the functions

$$\eta_1 = Y_1 - \frac{1}{2}\kappa\alpha \cos \Theta, \qquad \zeta_1 = Z_1 + \frac{1}{2}\kappa\alpha \cos \Theta,
\eta_2 = Y_2 - \frac{1}{2}\kappa\alpha \sin \Theta, \qquad \zeta_2 = Z_2 + \frac{1}{2}\kappa\alpha \sin \Theta,$$

$$\zeta_2 = Z_2 + \frac{1}{2}\kappa\alpha \sin \Theta, \qquad \zeta_3 = Z_4 + \frac{1}{2}\kappa\alpha \sin \Theta,$$
(11)

which express the amounts by which the functions Y1, Y2, Z1, Z2 differ from the values given by (10). These functions and their derivatives are calculable from the

^{*} Bromwich, loc. cit.

preceding tables, at the values of θ taken. Tables XX. to XXIII.* give steps in the necessary computations, and figs. 5 to 12 show the results plotted against θ from 0° to 150°. These curves show that for this range the first approximation is very good for Z_1 , Z_2 . In fact, the curves for ζ_1 , ζ_2 were easily drawn and gave interpolated values of Z_1 , Z_2 to three places of decimals, the last figure being approximate. The functions η_1, η_2 have a greater number of oscillations and greater amplitudes, and there was in places some little doubt as to the exact forms of the curves. By careful examination and comparison of corresponding curves for the two cases of $\kappa a = 9$ and 10, this difficulty was overcome. Such a comparison was more fruitful when the curves were plotted with Θ as abscissæ, and this was done with $\eta_1, \eta_2, \xi_1, \xi_2$, though the curves are not given below. Corresponding curves are very similar but are not in phase with each other. In the range $\theta = 0^{\circ}$ to 90°, it was found possible to obtain Y_1 , Y_2 to at least two places of decimals, with very little doubt.

It was the work just described which led to the detection of errors mentioned in § 1, 3, How this was possible becomes evident on an examination of the formulæ and numbers. For example, an error in Y_1 or Z_1 generally leads to a larger relative error in $\partial Y_1/\partial \theta$ and $\partial Z_1/\partial \theta$, to a much larger relative error in η_1 or ξ_1 , and to a very much larger relative error in $\partial_{\eta_1}/\partial\theta$ and $\partial_{\eta_1}/\partial\theta$. Thus, an error might pass unsuspected in the graph of Y_1 (for example) but render the drawing of the graph of η_1 impossible. Irregularities could also be detected in the curves plotted with Θ as abscissæ. these means it was possible easily to detect errors in Y₁, Y₂, Z₁, Z₂, of the magnitude 0.01. The actual finding of the errors involved much patient revision of the summing of the series. Their existence had previously been entirely unsuspected.

In this part of the work it was necessary to calculate a number of values of $\cos \Theta$ and $\sin \Theta$. The method adopted was to find θ such that $\Theta/\pi = r + \theta_1/180$, where r is an integer and $\theta_1 = 0^{\circ}$, 10° , $20^{\circ} \dots 170^{\circ}$. This yielded about eighteen points on each undulation, and a selection from these was made according to circumstances.

* Tables XXII., XXIII., and figs. 5 to 12 are not printed.

```
Table XXII. gives \eta_1, \eta_2, &c. (\kappa a = 9, 10).
           XXIII. ,, \partial \eta_1/\partial \theta, \partial \eta_2/\partial \theta, &c. (\kappa a = 9 \ 10).
Fig.
         5 gives the graph of \eta_1 (\kappa a = 9).
                                              \eta_1 (\kappa a = 10).
                                              \eta_2 \ (\kappa a = 9).
                                              \eta_2 \ (\kappa a = 10).
                                               \zeta_1 (\kappa a = 9).
        10
                                              \zeta_1 (\kappa a = 10)
                                               \zeta_2 (\kappa a = 9).
        12
                                              \zeta_2 (\kappa a = 10).
```

TABLE XX.

	$\kappa a = 9.$	The state of the s			$\kappa a = 10.$	and the second s
$180\Theta/\pi$.	$\sin \Theta$.	$\cos \Theta$.	θ .	$180\Theta/\pi$.	sin Θ.	$\cos \Theta$.
			0			
$1031 \cdot 3240$	-0.75099	+0.66032	0	$1145 \cdot 9156$	+0.91295	+0.40808
$1027 \cdot 3995$	-0.79442	+0.60737	10	1141.5550	+0.87927	+0.47631
$1015 \cdot 6558$	-0.90141	+0.43296	20	1128.5066	+0.74903	+0.66253
996 · 1825	-0.99418	+0.10770	30	1106.8694	+0.45196	+0.89204
$952 \cdot 8189$	-0.79673	-0.60434	45	1058.6878	-0.36345	+0.93161
893 • 1527	+0.11922	-0.99287	60	992.3918	-0.99913	+0.04173
$844 \cdot 8112$	+0.82104	-0.57087	70	$938 \cdot 6791$	-0.62496	-0.78066
790.0400	+0.93993	+0.34136	80	877 · 8222	+0.37748	-0.92602
$729 \cdot 2561$	+0.16085	+0.98698	90	810 · 2846	+0.99999	-0.00497
$662 \cdot 9223$	-0.83941	+0.54350	100	736.5803	+0.28536	+0.95842
591.5431	-0.78308	-0.62192	110	$657 \cdot 2702$	-0.88886	+0.45819
515.6620	+0.41212	-0.91113	120	$572 \cdot 9577$	-0.54402	-0.83907
$394 \cdot 6706$	+0.56880	+0.82244	135	438.5229	+0.98000	+0.19898
$266 \cdot 9263$	-0.99856	-0.05362	150	296.5847	-0.89427	+0.44752
$179 \cdot 0876$	+0.01592	-0.99987	160	198 • 9861	-0.32534	-0.94560
$89 \cdot 8858$	+1.00000	+0.00199	170	$99 \cdot 8731$	+0.98519	-0.17125
0.0000	0.00000	+1.00000	180	0.0000	0.00000	+1.00000

TABLE XXI.

ка	= 9.		κα =	= 10.
$\frac{\partial}{\partial \theta}$. $\sin \Theta$.	$\frac{\partial}{\partial \theta} \cdot \cos \Theta$.	θ .	$\frac{\partial}{\partial \theta}$. $\sin \Theta$.	$\frac{\partial}{\partial \theta}$. cos Θ .
0.00000		۰	0.0000	0.00000
0.00000	0.00000	0	0.00000	0.00000
-0.00832	-0.01088	10	-0.00725	+0.01337
-0.01181	-0.02459	20	-0.02008	+0.02270
-0.00438	-0.04042	30	-0.04029	+0.02042
+0.03633	-0.04789	45	-0.06222	-0.02428
+0.07798	+0.00936	60	-0.00364	-0.08719
+0.05143	+0.07397	70	+0.07815	-0.06256
-0.03447	+0.09491	80	+0.10389	+0.04235
-0.10963	+0:01787	90	+0.00061	+0.12341
-0.06540	-0.10100	100	-0.12814	+0.03815
+0.08002	-0.10076	110	-0.06551	-0.12708
+0.12395	+0.05606	120	+0.12683	-0.08223
-0.11936	+0.08255	135	-0.03208	+0.15802
+0.00814	-0.15151	150	-0.07544	-0.15076
+0.15467	+0.00246	160	+0.16253	-0.05592
-0.00031	+0.15648	170	+0.02977	+0.17129
-0.15708	+0.00000	180	+0.17453	+0.00000

5. There remains the discussion of Y_1 , Y_2 for the range $\theta = 90^{\circ}$ to 180° , and of Z_1 , Z_2 for the range $\theta = 120^{\circ}$ to 180° . For portions of these ranges a method was used which consists in decomposing η_1 , η_2 , ξ_1 , ξ_2 into functions for which graphical interpolation is easier.

For both $\kappa a = 9$ and 10, take

$$\eta_1 = \alpha_1 \cos \Theta + \beta_1 \sin \Theta, \qquad \zeta_1 = \gamma_1 \cos \Theta + \delta_1 \sin \Theta,
\eta_2 = \alpha_2 \cos \Theta + \beta_2 \sin \Theta, \qquad \zeta_2 = \gamma_2 \cos \Theta + \delta_2 \sin \Theta,$$
(12)

where α_1 , α_2 , β_1 , β_2 , γ_1 , γ_2 , δ_1 , δ_2 are functions of θ only.

These functions, thus defined, are perfectly determinate, but they can only be used for $\kappa a = 9$, 10. Together with their derivatives, they are calculable for the tabulated values of θ . We have, in fact,

$$\alpha_{1} = \frac{\Delta(\eta_{1}/\sin \Theta)}{\Delta(\cot \Theta)}, \qquad \beta_{1} = \frac{\Delta(\eta_{1}/\cos \Theta)}{\Delta(\tan \Theta)},$$

$$\alpha_{2} = \frac{\Delta(\eta_{2}/\cos \Theta)}{\Delta(\tan \Theta)}, \qquad \beta_{2} = \frac{\Delta(\eta_{2}/\sin \Theta)}{\Delta(\cot \Theta)},$$
(13)

with similar formulæ for γ_1 , γ_2 , δ_1 , δ_2 , where $\Delta F(\kappa a)$ denotes F(10) - F(9). Also,

$$\frac{\partial \alpha_{1}}{\partial \theta} = \left[\Delta \left(\frac{\partial \eta_{1}}{\partial \theta} / \sin \Theta \right) + \frac{\pi}{180} \sin \frac{1}{2} \theta \left\{ \alpha_{1} + \beta_{1} \Delta \left(\kappa \alpha \cot \Theta \right) \right\} \right] / \Delta \left(\cot \Theta \right),
\frac{\partial \beta_{1}}{\partial \theta} = \left[\Delta \left(\frac{\partial \eta_{1}}{\partial \theta} / \cos \Theta \right) - \frac{\pi}{180} \sin \frac{1}{2} \theta \left\{ \beta_{1} + \alpha_{1} \Delta \left(\kappa \alpha \tan \Theta \right) \right\} \right] / \Delta \left(\tan \Theta \right),$$
(14)

with similar formulæ for the remaining cases.

The values of the functions themselves are given in Table XXIV. for the range $\theta = 0^{\circ}$ to 150°, and are plotted by means of small circles in figs. 13 to 16. As will be seen, it is possible to draw smooth curves with few undulations approximately through these points. The complete graphs of α_1 , α_2 , &c., differ from the curves of figs. 13 to 16 by a number of ripples. An attempt has only been made to draw these ripples in those parts of the curves actually required for interpolation. For this the gradients were necessary, and the values of the derivatives used are given in Table XXV. With the limited data of Tables XXIV., XXV. the drawing of the ripples is not perfectly determinate, but it was assumed that the graphs of η_1 , η_2 , &c. (and of Y1, Y2, &c.), are without ripples, and after a number of trials the ripples of the graphs of α_1 , α_2 , &c., were drawn in such a way as to secure this, but they are not given in the figures.

TABLE XXIV.

θ .	α_1 .	β_1 .	α2.	eta_2 .	γ1.	δ_1 .	γ_2 .	δ_2 .
	0.000	. 0.007	0.040	. 0. 000	. 0.000	0.007	. 0. 240	0.000
0 10	-0.068	$+0.007 \\ -0.183$	-0.340	+0.296	$+0.068 \\ +0.043$	-0.007 + 0.051	$+0.340 \\ +0.197$	$egin{array}{c} -0.296 \ -0.277 \end{array}$
$\frac{10}{20}$	-0.036 -0.040	-0.183	+0.049 +0.308	$+0.285 \\ +0.282$	+0.012	+0.031 +0.192	-0.022	-0.277 -0.261
3 0	+0.002	-0.459	-0.121	+0.115	+0.019	+0.293	-0.022	-0.250
45	+0.290	-0.129	-0.172	+0.440	-0.035	+0.242	+0.008	-0.190
6 0	-0.352	-0.001	+0.116	+0.648	-0.057	+0.187	+0.003	-0.250
70	-0.469	-0.428	+0.545	+0.461	-0.046	+0.140	-0.059	-0.228
80	-0.620	-0.938	+0.324	+0.059	-0.039	+0.143	-0.131	-0:199
90	-0.144	-1.38	+0.085	-0.291	-0.072	+0.118	-0.187	-0.120
100	+0.212	-1.69	-0.696	-0.272	-0.164	+0.116	-0.260	-0.025
110	+0.960	-1.68	$-1\cdot34$	-0.020	-0.267	+0.041	-0.377	+0.070
120	+1.360	-1.56	-2.31	+0.576	-0.202	-0.070	-0.541	+0.261
135	+2.23	-1.14	-3.30	+2.28	-0.861	-0.368	$-1 \cdot 26$	+0.495
150	+3.30	-0.59	- 6 ·81	+5.83	-1.586	-0.356	- 3 ·20	+1.71

TABLE XXV.

	θ.	$\frac{\partial a_1}{\partial heta}$.	$\frac{\widehat{c}\beta_1}{\partial \theta}$.	$\frac{\partial \alpha_2}{\partial \theta}$.	$\frac{\partial \beta_2}{\partial \theta}$.	$\frac{\partial \gamma_1}{\partial \theta}$.	$\frac{\partial \delta_1}{\partial \theta}$.	$\frac{\partial \gamma_2}{\partial \theta}$.	$\frac{\partial \delta_2}{\partial \theta}$.
1 1 1 1	90 00 10 20 35 50	+0.052 +0.049 +0.066 +0.050 +0.022 +0.034	-0.062 -0.009 -0.020 +0.055 +0.049 +0.010	$\begin{array}{c} -0.043 \\ -0.082 \\ -0.075 \\ -0.087 \\ -0.148 \\ -0.400 \end{array}$	+0.0032 -0.0099 $+0.065$ $+0.056$ $+0.089$ $+0.148$	-0.026 -0.055 -0.027	-0.014 -0.005 -0.036 -0.049	- 0 · 064 - 0 · 277	+0.019 +0.023 +0.124

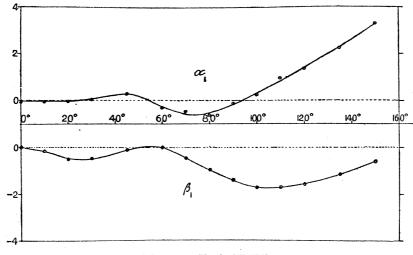


Fig. 13. Table XXIV.

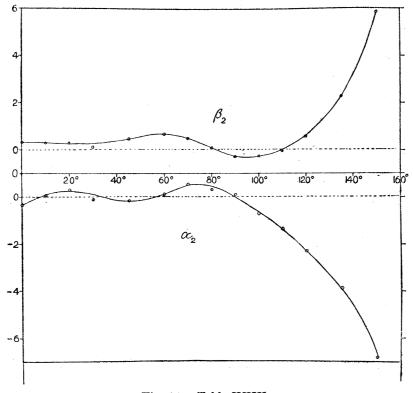


Fig. 14. Table XXIV.

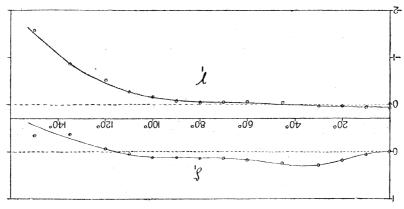


Fig. 15. Table XXIV.

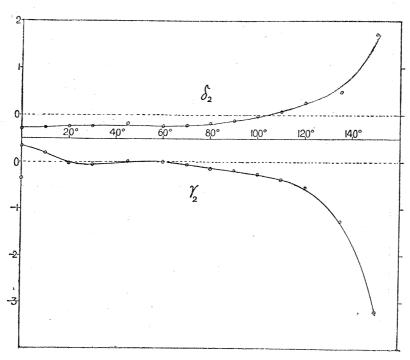


Table XXIV. Fig. 16.

In using the functions α_1 , α_2 , &c., considerations of the possible forms for the theoretical higher approximations for large values of κa have been continually in mind. Take Y_1 , for example; the first approximation being $Y_1 = \frac{1}{2}\kappa a \cos \Theta$, let us assume an expression of the form

$$Y_1 = A(\theta, \kappa a) \cos \{\Phi(\theta, \kappa a)\} (15)$$

Then in the first approximation, we have

$$A(\theta, \kappa a) = \frac{1}{2}\kappa a, \quad \Phi(\theta, \kappa a) = \Theta.$$

Let us now suppose that higher approximations are got by taking

$$A(\theta, \kappa a) = \frac{1}{2}\kappa a + A_0(\theta) + \frac{A_1(\theta)}{\kappa a}, \qquad \Phi(\theta, \kappa a) = \Theta + \frac{\Phi_1(\theta)}{\kappa a} + \frac{\Phi_2(\theta)}{(\kappa a)^2}, \quad . \quad (16)$$

where the new functions of θ are small compared with κa . The omission of a term independent of κa in $\Phi(\theta, \kappa a)$ is necessary if $Y_1/\frac{1}{2}\kappa a \cos \theta \to 1$ as $\kappa a \to \infty$.

To the same order of approximation, (16) yields

$$\eta_1 = \left(\alpha_0 + \frac{\alpha_1}{\kappa \alpha}\right) \cos \Theta + \left(b_0 + \frac{b_1}{\kappa \alpha}\right) \sin \Theta, \quad (17)$$

where a_0 , a_1 , b_0 , b_1 are functions of θ , being calculable in terms of those in (16). We then obtain, from (13),

$$a_1 = a_0 + \frac{a_1}{180} \left\{ 19 + \frac{\sin\left(38\cos\frac{1}{2}\theta\right)}{\sin\left(2\cos\frac{1}{2}\theta\right)} \right\} + \frac{b_1}{90} \frac{\sin\left(18\cos\frac{1}{2}\theta\right)\sin\left(20\cos\frac{1}{2}\theta\right)}{\sin\left(2\cos\frac{1}{2}\theta\right)}, \quad (18)$$

and a similar expression for β_1 .

It is interesting to compare this hypothetical approximate expression for α_1 with what is known about the exact value of this function. Since the coefficients of a_1 and b_1 in (18) are rapidly oscillating functions of θ with small amplitude, the suggestion immediately arises that the smooth curve a_1 of fig. 13 is the graph of a_0 , or perhaps of $a_0 + \frac{19}{180}a_1$, and that the ripples of the same figure are approximately represented by the remainder of (18).

From $\theta = 150^{\circ}$ to $\theta = 180^{\circ}$ simple graphical interpolation of Y_1, Y_2, Z_1, Z_2 has been relied upon.

Table XXVI. contains all the interpolated values of Y_1 , Y_2 , Z_1 , Z_2 , $Y_1^2 + Y_2^2$, $Z_1^2 + Z_2^2$ that have been used.

TABLE XXVI.

$\kappa a = 9.$								
θ.	Y ₁ .	\mathbf{Y}_2 .	Z_1 .	Z_2 .	$Y_{1}^{2} + Y_{2}^{2}$.	$Z_{1}^{2}+Z_{2}^{2}$		
5·81 12·70 17·00	$2 \cdot 893 \\ 2 \cdot 791 \\ 2 \cdot 610$	$\begin{array}{rrrr} - & 3 \cdot 096 \\ - & 3 \cdot 680 \\ - & 4 \cdot 035 \end{array}$	$ \begin{array}{r} -2.863 \\ -2.631 \\ -2.369 \end{array} $	$\begin{array}{r} + \ 3 \cdot 038 \\ + \ 3 \cdot 426 \\ + \ 3 \cdot 737 \end{array}$	$18 \cdot 0$ $21 \cdot 3$ $23 \cdot 1$	17 · 43 18 · 66 19 · 58		
$20 \cdot 42$ $23 \cdot 34$ $25 \cdot 95$	$2 \cdot 361 \\ 2 \cdot 043 \\ 1 \cdot 678$	$egin{array}{lll} -&4\!\cdot\!233 \ -&4\!\cdot\!337 \ -&4\!\cdot\!367 \end{array}$	$-2 \cdot 077 \\ -1 \cdot 760 \\ -1 \cdot 420$	$\begin{array}{c} + \ 3 \cdot 992 \\ + \ 4 \cdot 191 \\ + \ 4 \cdot 343 \end{array}$	$23 \cdot 5 \\ 23 \cdot 0 \\ 21 \cdot 9$	20·25 20·66 20·88		
28·31 30·50 32·55	$1 \cdot 272 \\ 0 \cdot 830 \\ 0 \cdot 370$	$\begin{array}{rrrr} - & 4 \cdot 360 \\ - & 4 \cdot 333 \\ - & 4 \cdot 284 \end{array}$	$ \begin{array}{r} -1.059 \\ -0.683 \\ -0.293 \end{array} $	+ 4·449 + 4·513 + 4·540	$20 \cdot 6 \\ 19 \cdot 5 \\ 18 \cdot 5$	20 · 92 20 · 83 20 · 70		
$34 \cdot 48 \\ 36 \cdot 30 \\ 38 \cdot 05$	$-0.102 \\ -0.562 \\ -1.015$	$-4 \cdot 241 \\ -4 \cdot 182 \\ -4 \cdot 114$	+0.102 +0.496 +0.895	+ 4·532 + 4·488 + 4·412	$18 \cdot 0$ $17 \cdot 8$ $18 \cdot 0$	$20 \cdot 55$ $20 \cdot 39$ $20 \cdot 27$		
$39 \cdot 71$ $41 \cdot 32$ $42 \cdot 86$	$-1\cdot 459 \\ -1\cdot 878 \\ -2\cdot 270$	$ \begin{array}{rrr} & - & 4 \cdot 036 \\ & - & 3 \cdot 960 \\ & - & 3 \cdot 875 \end{array} $	+1.286 +1.672 +2.045	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$18 \cdot 4$ $19 \cdot 2$ $20 \cdot 2$	20·13 20·09 2 0·08		
$44 \cdot 36$ $45 \cdot 81$ $47 \cdot 22$	$-2 \cdot 623 \\ -2 \cdot 952 \\ -3 \cdot 234$	$ \begin{array}{rrr} - & 3.783 \\ - & 3.641 \\ - & 3.493 \end{array} $	+2.414 +2.739 +3.063	+ 3.788 + 3.565 + 3.318	$egin{array}{c} 21 \cdot 2 \ 22 \cdot 0 \ 22 \cdot 7 \end{array}$	$20 \cdot 18$ $20 \cdot 21$ $20 \cdot 39$		
48.58 49.92 51.22	-3.487 -3.696 -3.869	$\begin{array}{rrr} - & 3 \cdot 312 \\ - & 3 \cdot 105 \\ - & 2 \cdot 870 \end{array}$	$+3 \cdot 352 +3 \cdot 616 +3 \cdot 854$	$\begin{array}{ c c c c c c } & + & 3 \cdot 047 \\ & + & 2 \cdot 751 \\ & + & 2 \cdot 440 \end{array}$	$23 \cdot 1 \\ 23 \cdot 3 \\ 23 \cdot 2$	20.52 20.64 20.81		
52·49 53·73 54· 9 5	$-3.998 \\ -4.081 \\ -4.169$	$\begin{array}{rrr} - & 2.580 \\ - & 2.251 \\ - & 1.893 \end{array}$	+4.056 +4.225 +4.364	+ 2·106 + 1·759 + 1·396	$22 \cdot 6 \\ 21 \cdot 7 \\ 21 \cdot 0$	$20 \cdot 89$ $20 \cdot 95$ $20 \cdot 99$		
56·14 57·31 58·47	$-4 \cdot 203 \\ -4 \cdot 207 \\ -4 \cdot 198$	$\begin{array}{rrr} - & 1.511 \\ - & 1.110 \\ - & 0.686 \end{array}$	$+4.465 \\ +4.531 \\ +4.560$	+ 1·022 + 0·639 + 0·250	19·9 18·9 18·1	20.98 20.94 20.86		
60.70 62.86 64.96	$ \begin{array}{r} -4 \cdot 073 \\ -3 \cdot 872 \\ -3 \cdot 581 \end{array} $	+ 0·201 + 1·099 + 2·000	+4.515 +4.330 +4.016	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16·6 16·2 16·8	$20 \cdot 67$ $20 \cdot 46$ $20 \cdot 32$		
67·00 68·99 70·93	$ \begin{array}{r} -3 \cdot 247 \\ -2 \cdot 873 \\ -2 \cdot 439 \end{array} $	$ \begin{array}{rrrr} + & 2.826 \\ + & 3.551 \\ + & 4.137 \end{array} $	+3.577 +3.032 +2.395	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 18.5 \\ 20.9 \\ 23.1 \end{array} $	$20 \cdot 26$ $20 \cdot 34$ $20 \cdot 54$		
72·82 74·68 76·49	$ \begin{array}{r} -1 \cdot 967 \\ -1 \cdot 427 \\ -0 \cdot 829 \end{array} $	+ 4·589 + 4·845 + 4·917	+1.688 +0.930 +0.143	$\begin{array}{cccc} - & 4 \cdot 234 \\ - & 4 \cdot 498 \\ - & 4 \cdot 615 \end{array}$	$ \begin{array}{c} 24 \cdot 9 \\ 25 \cdot 5 \\ 24 \cdot 9 \end{array} $	20.78 21.10 21.32		
78 · 26 80 · 00 81 · 72	$ \begin{array}{c c} -0.217 \\ +0.442 \\ +1.123 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0.645 \\ -1.418 \\ -2.146$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} 23 \cdot 3 \\ 21 \cdot 6 \\ 18 \cdot 3 \end{array}$	$21 \cdot 46 \\ 21 \cdot 56 \\ 21 \cdot 49$		

TABLE XXVI. (continued).

			$\kappa a = 9.$			•
θ.	Y ₁ .	Y ₂ .	Z_1 .	\mathbf{Z}_{2} .	$Y_1^2 + Y_2^2$.	$Z_{1}^{2}+Z_{2}^{2}$
83·41 85·06 86·69	$+1.784 \\ +2.415 \\ +3.004$	$\begin{array}{c} + \ 3.541 \\ + \ 2.873 \\ + \ 2.116 \end{array}$	$ \begin{array}{r} -2.812 \\ -3.392 \\ -3.872 \end{array} $	$\begin{array}{r} - & 3 \cdot 671 \\ - & 3 \cdot 116 \\ - & 2 \cdot 462 \end{array}$	15·7 14·1 13·5	$21 \cdot 38$ $21 \cdot 22$ $21 \cdot 05$
$88 \cdot 30$ $89 \cdot 88$ $91 \cdot 45$	$+3.574 \\ +4.034 \\ +4.410$	$\begin{array}{ c c c c } + & 1 \cdot 316 \\ + & 0 \cdot 514 \\ - & 0 \cdot 281 \end{array}$	$-4 \cdot 238 \\ -4 \cdot 477 \\ -4 \cdot 585$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.5 \\ 16.5 \\ 19.5$	$20 \cdot 94$ $20 \cdot 92$ $21 \cdot 03$
92·99 94·51 96·01	4·68 4·81 4·81	$\begin{array}{ c c c c c c }\hline & - & 1 \cdot 03 \\ & - & 1 \cdot 71 \\ & - & 2 \cdot 31 \\ \hline \end{array}$	$ \begin{array}{r} -4.552 \\ -4.380 \\ -4.068 \end{array} $	$0.729 \\ 1.540 \\ 2.300$	$23 \cdot 0$ $26 \cdot 1$ $28 \cdot 5$	21 · 25 21 · 56 21 · 84
97.50 98.97 100.42	4 · 65 4 · 31 3 · 84	$\begin{array}{ c c c c c c }\hline & - & 2 \cdot 78 \\ & - & 3 \cdot 16 \\ & - & 3 \cdot 41 \\ \hline \end{array}$	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$3.006 \\ 3.615 \\ 4.112$	$29 \cdot 4 \\ 28 \cdot 6 \\ 26 \cdot 4$	22·23 22·56 2 2·82
101 · 86 103 · 29 104 · 70	$3 \cdot 21 \\ 2 \cdot 48 \\ 1 \cdot 62$	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4·485 4·716 4·800	$23 \cdot 1$ $19 \cdot 0$ $14 \cdot 9$	23 · 04 23 · 09 23 · 05
106·09 107·48 108·85	$0.71 \\ -0.27 \\ -1.25$	$\begin{array}{ c c c c c c }\hline & - & 3 \cdot 32 \\ & - & 3 \cdot 07 \\ & - & 2 \cdot 75 \\ \hline \end{array}$	+0.735 1.556 2.324	4·734 4·527 4·177	11·5 9·5 9·1	$22 \cdot 95$ $22 \cdot 92$ $22 \cdot 85$
110·21 111· 56 112·90	$ \begin{array}{r} -2 \cdot 27 \\ -3 \cdot 17 \\ -3 \cdot 98 \end{array} $	$\begin{array}{ c c c c c c } - & 2 \cdot 39 \\ - & 1 \cdot 99 \\ - & 1 \cdot 60 \end{array}$	3·040 3·661 4·181	$3 \cdot 694 \\ 3 \cdot 078 \\ 2 \cdot 360$	10.9 14.0 18.4	$22 \cdot 88$ $22 \cdot 88$ $23 \cdot 05$
114·22 115·54 116·85	$ \begin{array}{r} -4.72 \\ -5.31 \\ -5.75 \end{array} $	$\begin{array}{ c c c c c c }\hline & - & 1 \cdot 19 \\ & - & 0 \cdot 79 \\ & - & 0 \cdot 41 \\ \hline\end{array}$	4.580 4.834 4.937	$ \begin{array}{r} 1 \cdot 559 \\ 0 \cdot 704 \\ - 0 \cdot 170 \end{array} $	$23 \cdot 7$ $28 \cdot 8$ $33 \cdot 2$	23 · 41 23 · 86 24 · 40
$118 \cdot 15$ $119 \cdot 44$ $120 \cdot 73$	$ \begin{array}{r} -5 \cdot 99 \\ -6 \cdot 04 \\ -5 \cdot 88 \end{array} $	$\begin{array}{c c} - & 0.07 \\ + & 0.25 \\ 0.52 \end{array}$	$4 \cdot 879$ $4 \cdot 669$ $4 \cdot 31$	$\begin{array}{cccc} - & 1.052 \\ - & 1.905 \\ - & 2.76 \end{array}$	$35 \cdot 9 \\ 36 \cdot 5 \\ 34 \cdot 8$	$24 \cdot 91 \\ 25 \cdot 43 \\ 26 \cdot 2$
$122 \cdot 00$ $123 \cdot 27$ $124 \cdot 53$	$ \begin{array}{r} -5.54 \\ -5.01 \\ -4.31 \end{array} $	$ \begin{array}{c c} 0.76 \\ 0.93 \\ 1.10 \end{array} $	$3.82 \\ 3.17 \\ 2.42$	$\begin{array}{c c} - & 3.50 \\ - & 4.16 \\ - & 4.67 \end{array}$	$31 \cdot 3$ $26 \cdot 0$ $19 \cdot 8$	26 · 8 27 · 4 27 · 7
$125 \cdot 78$ $127 \cdot 02$ $128 \cdot 26$	$egin{array}{c} -3 \cdot 46 \ -2 \cdot 47 \ -1 \cdot 37 \end{array}$	$1 \cdot 24$ $1 \cdot 41$ $1 \cdot 55$	$egin{array}{c} 1 \cdot 59 \\ 0 \cdot 70 \\ -0 \cdot 21 \end{array}$	$ \begin{array}{rrrr} & 5.06 \\ & 5.31 \\ & 5.40 \end{array} $	13·5 8·1 4·3	$28 \cdot 1 \\ 28 \cdot 7 \\ 29 \cdot 2$
$129 \cdot 49$ $130 \cdot 72$ $131 \cdot 94$	$\begin{array}{c c} -0.20 \\ +1.02 \\ 2.22 \end{array}$	1.67 1.83 1.95	$ \begin{array}{r r} -1 \cdot 10 \\ -1 \cdot 99 \\ -2 \cdot 84 \end{array} $	$ \begin{array}{rrrr} & - & 5 \cdot 30 \\ & - & 5 \cdot 05 \\ & - & 4 \cdot 62 \end{array} $	2 · 8 4 · 4 8 · 7	29·3 29·5 29·4
133·15 134·36 135·56	$3 \cdot 36$ $4 \cdot 39$ $5 \cdot 31$	$2 \cdot 05 \\ 2 \cdot 15 \\ 2 \cdot 28$	$ \begin{array}{r} -3.63 \\ -4.30 \\ -4.85 \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$15.5 \\ 23.9 \\ 33.4$	29·5 29·5 29·6

Table XXVI. (continued).

$\kappa a = 9.$								
θ.	Y ₁ .	Y ₂ .	Z_1 .	Z_2 .	$Y_1^2 + Y_2^2$.	$Z_{1}^{2} + Z_{2}^{2}$		
136.76	6.02	2.55	-5.27	- 1:49	42.7	30.0		
137.95	6.56	$\frac{2}{2} \cdot 77$	-5.52	- 0.44	50.7	30.7		
139.14	6.89	3.00	-5.60	+ 0.67	56.5	31.8		
140.32	6.99	3.16	-5.52	1.81	58.9	33.8		
141.50	6.90	$3 \cdot 35$	-5.29	$2 \cdot 93$	58.8	36.6		
142.68	6.56	3.41	-4.85	4.04	54.7	39.8		
143.85	6.04	3.40	$-4 \cdot 23$	5.02	48.0	43.1		
$145 \cdot 01$	5 · 29	$3 \cdot 33$	-3.49	5.90	39 · 1	47.0		
14 6 ·18	4.33	3.16	-2.62	6.65	28.7	51.1		
$147 \cdot 33$	3.19	2.88	-1.68	7 · 17	18.5	54:2		
$148 \cdot 49$	1.93	$2 \cdot 45$	-0.67	7.52	$9 \cdot 7$	57.0		
149.65	0.58	1 · 97	+0.36	7 · 62	$4\cdot 2$	$58 \cdot 2$		
$150 \cdot 2$	- 2:50	0.5	2.6	7:1	6.5	57		
150.4	-4.82	- 1.2	4 · 4	5.7	24.6	52		
150 · 6	-6.81	- 3.6	6.02	3.6	$59 \cdot 4$	49		
150.8	-8.17	- 6.2	7.28	0.5	109	53		
$160 \cdot 2$	-9.58	-14.2	8.32	- 8.1	294	135		
$160 \cdot 4$	-9.30	-18.1	8.18	-12.8	415	231		
160.6	-8.42	-22.4	7.60	-17:9	573	378		
160.8	-6.38	-26.9	6.36	-23.1	773	574		
$170 \cdot 2$	-3.20	-34.8	3.60	-33.0	1220	1100		
$170 \cdot 4$	-1.20	-38.0	2.18	$-37\cdot 2$	1445	1390		
170.6	0.00	-40.2	1 · 36	-40.0	1620	1600		
$170 \cdot 8$	0.60	-41.5	0.85	$-41 \cdot 3$	1720	1710		

 $\kappa a = 10.$

θ .	Y ₁ .	\mathbf{Y}_2 .	Z_1 .	Z_2 .	$Y_1^2 + Y_2^2$.	$Z_{1}^{2}+Z_{2}^{2}$
° 4.58		- Aller and the second	-2.085	- 4.376		23.60
11.65	$2 \cdot 28$	$4 \cdot 59$	$-2 \cdot 420$	- 4.330	$26 \cdot 3$	$24 \cdot 61$
$15 \cdot 83$	2.53	4.51	-2.750	- 4.197	$26 \cdot 7$	$25 \cdot 17$
19.12	2.80	4.26	-3.066	- 4.002	26.0	$25 \cdot 42$
$21 \cdot 93$	3.12	$3 \cdot 91$	$-3\cdot369$	-3.751	$25 \cdot 0$	$25 \cdot 42$
$24 \cdot 42$	3 · 44	3.48	-3.656	- 3.455	2 3·9	25:30
26.68	$3 \cdot 75$	$3 \cdot 03$	-3.924	- 3.118	23.2	$25 \cdot 12$
28.77	$4\cdot07$	$2 \cdot 58$	-4.168	- 2.750	23.1	$24 \cdot 93$
30.71	$4 \cdot 36$	$2 \cdot 15$	-4.386	- 2:360	23.5	$24 \cdot 81$

TABLE XXVI. (continued).

			$\kappa a = 10.$			
θ .	Y_1 .	\mathbf{Y}_{2} .	Z_1 .	\mathbf{Z}_2 .	$Y_1^2 + Y_2^2$.	$Z_{1}^{2}+Z_{2}^{2}.$
$32.55 \\ 34.29 \\ 35.95$	4 · 64 4 · 87 5 · 06	$1.72 \\ 1.27 \\ 0.86$	-4.577 -4.738 -4.863	- 1·945 - 1·520 - 1·085	$24 \cdot 5 \\ 25 \cdot 3 \\ 26 \cdot 3$	$24.73 \\ 24.76 \\ 24.83$
$37 \cdot 53$ $39 \cdot 06$ $41 \cdot 95$	$5 \cdot 20 \\ 5 \cdot 27 \\ 5 \cdot 24$	$0.47 \\ 0.10 \\ -0.69$	-4.956 -5.009 -4.993	$\begin{array}{c c} - & 0.644 \\ - & 0.200 \\ 0.678 \end{array}$	$27 \cdot 3 \\ 27 \cdot 8 \\ 27 \cdot 9$	$24 \cdot 98$ $25 \cdot 13$ $25 \cdot 39$
$44 \cdot 66 \\ 47 \cdot 22 \\ 49 \cdot 66$	$5 \cdot 02$ $4 \cdot 59$ $3 \cdot 96$	$ \begin{array}{rrrr} & - & 1 \cdot 26 \\ & - & 1 \cdot 94 \\ & - & 2 \cdot 63 \end{array} $	$-4.825 \\ -4.498 \\ -4.029$	1.530 2.328 3.049	$26 \cdot 8 \\ 24 \cdot 8 \\ 22 \cdot 6$	25 · 62 25 · 65 25 · 53
$51 \cdot 99$ $54 \cdot 22$ $56 \cdot 38$	$3 \cdot 21 \\ 2 \cdot 45 \\ 1 \cdot 64$	$ \begin{array}{rrr} - & 3 \cdot 27 \\ - & 3 \cdot 86 \\ - & 4 \cdot 43 \end{array} $	$-3 \cdot 430 \\ -2 \cdot 720 \\ -1 \cdot 926$	3·680 4·200 4·604	$21 \cdot 0$ $20 \cdot 9$ $22 \cdot 3$	25 · 31 25 · 04 24 · 90
$58 \cdot 46$ $60 \cdot 48$ $62 \cdot 43$	0.82 0.00 - 0.77	$ \begin{array}{rrrr} & 4.85 \\ & 5.14 \\ & 5.30 \end{array} $	$ \begin{array}{r r} -1.068 \\ -0.181 \\ +0.708 \end{array} $	4.878 5.000 4.969	$24 \cdot 2$ $26 \cdot 4$ $28 \cdot 7$	24 · 87 25 · 03 25 · 19
$64 \cdot 34$ $66 \cdot 19$ $68 \cdot 00$	$ \begin{array}{rrr} - & 1 \cdot 48 \\ - & 2 \cdot 12 \\ - & 2 \cdot 65 \end{array} $	$ \begin{array}{rrrr} & -5 \cdot 28 \\ & -5 \cdot 01 \\ & -4 \cdot 55 \end{array} $	+1.577 2.390 3.133	$4 \cdot 790 \\ 4 \cdot 470 \\ 4 \cdot 006$	$30 \cdot 1 \\ 29 \cdot 6 \\ 27 \cdot 7$	25 · 43 25 · 69 25 · 87
$69 \cdot 77$ $71 \cdot 50$ $73 \cdot 19$	$ \begin{array}{rrrr} & -3 \cdot 22 \\ & -3 \cdot 64 \\ & -3 \cdot 98 \end{array} $	$\begin{array}{c c} - & 3 \cdot 92 \\ - & 3 \cdot 15 \\ - & 2 \cdot 23 \end{array}$	3.777 4.300 4.698	$3 \cdot 425 \\ 2 \cdot 731 \\ 1 \cdot 949$	$25 \cdot 7$ $23 \cdot 2$ $20 \cdot 8$	26 · 00 25 · 95 25 · 87
74.85 76.48 79.68	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrr} & - & 1 \cdot 25 \\ & - & 0 \cdot 23 \\ & + & 1 \cdot 76 \end{array} $	$4 \cdot 943 \\ 5 \cdot 044 \\ 4 \cdot 786$	$ \begin{array}{r} 1 \cdot 101 \\ 0 \cdot 216 \\ - 1 \cdot 569 \end{array} $	$19 \cdot 4$ $19 \cdot 3$ $22 \cdot 9$	$25 \cdot 64$ $25 \cdot 49$ $25 \cdot 37$
$82 \cdot 74 \\ 85 \cdot 72 \\ 88 \cdot 62$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$3 \cdot 41 \\ 4 \cdot 60 \\ 5 \cdot 11$	$3 \cdot 950$ $2 \cdot 633$ $0 \cdot 998$	$\begin{array}{rrr} - & 3 \cdot 166 \\ - & 4 \cdot 385 \\ - & 5 \cdot 074 \end{array}$	$29 \cdot 6$ $32 \cdot 6$ $30 \cdot 3$	25 · 62 26 · 16 26 · 75
$91 \cdot 45 \\ 94 \cdot 21 \\ 96 \cdot 91$	$ \begin{array}{r} - 0.59 \\ + 1.13 \\ 2.83 \end{array} $	$4 \cdot 87 \\ 4 \cdot 03 \\ 2 \cdot 75$	$ \begin{array}{r} -0.767 \\ -2.457 \\ -3.861 \end{array} $	$ \begin{array}{rrr} - & 5 \cdot 139 \\ - & 4 \cdot 560 \\ - & 3 \cdot 414 \end{array} $	$24 \cdot 1 \\ 17 \cdot 5 \\ 15 \cdot 6$	27 · 00 26 · 83 26 · 58
99.56 102.15 104.70	4·31 5·37 5·77	$ \begin{array}{r} 1 \cdot 24 \\ - 0 \cdot 30 \\ - 1 \cdot 62 \end{array} $	$ \begin{array}{r} -4 \cdot 809 \\ -5 \cdot 184 \\ -4 \cdot 919 \end{array} $	$\begin{array}{c} - \ 1 \cdot 824 \\ 0 \cdot 000 \\ 1 \cdot 840 \end{array}$	$20 \cdot 1 \\ 28 \cdot 9 \\ 35 \cdot 9$	$26 \cdot 46$ $26 \cdot 87$ $27 \cdot 59$
$107 \cdot 20$ $109 \cdot 67$ $112 \cdot 10$	$5 \cdot 44 \\ 4 \cdot 42 \\ 2 \cdot 74$	$ \begin{array}{rrr} & - & 2 \cdot 62 \\ & - & 3 \cdot 25 \\ & - & 3 \cdot 39 \end{array} $	$ \begin{array}{r} -4.050 \\ -2.660 \\ -0.919 \end{array} $	$3 \cdot 455 \\ 4 \cdot 688 \\ 5 \cdot 336$	$36.5 \\ 30.1 \\ 19.0$	$28 \cdot 34$ $29 \cdot 06$ $29 \cdot 31$
114·49 116·85 119·18	$ \begin{array}{r} 0.63 \\ - 1.65 \\ - 3.82 \end{array} $	$ \begin{array}{rrrr} - & 3 \cdot 23 \\ - & 2 \cdot 81 \\ - & 2 \cdot 18 \end{array} $	$+0.972 \\ 2.761 \\ 4.245$	5·343 4·682 3·418	$10 \cdot 9 \\ 10 \cdot 6 \\ 19 \cdot 3$	29·49 29·54 29·70

VOL. CCXVII.—A.

Table XXVI. (continued).

			$\kappa a = 10.$			
θ .	Y_1 .	Y ₂ .	Z_1 .	Z_2 .	$Y_1^2 + Y_2^2$.	$Z_1^2 + Z_2^2$
$ \begin{array}{c} \stackrel{\circ}{121 \cdot 49} \\ 123 \cdot 77 \\ 124 \cdot 90 \end{array} $	$ \begin{array}{rrrr} & 5 \cdot 55 \\ & 6 \cdot 60 \\ & 6 \cdot 83 \end{array} $	- 1:31 - 0:74 - 0:50	5·243 5·585 5·511	$ \begin{array}{r} + 1.61 \\ - 0.31 \\ - 1.30 \end{array} $	$32 \cdot 5$ $44 \cdot 1$ $46 \cdot 9$	$ \begin{array}{r} 30 \cdot 1 \\ 31 \cdot 3 \\ 32 \cdot 1 \end{array} $
$126 \cdot 03$ $127 \cdot 15$ $128 \cdot 26$	$ \begin{array}{rrrr} & - & 6 \cdot 84 \\ & - & 6 \cdot 64 \\ & - & 6 \cdot 20 \end{array} $	$ \begin{array}{rrr} & -0.18 \\ & +0.07 \\ & +0.26 \end{array} $	$5 \cdot 240$ $4 \cdot 795$ $4 \cdot 179$	$ \begin{array}{rrrr} & - & 2 \cdot 29 \\ & - & 3 \cdot 23 \\ & - & 4 \cdot 08 \end{array} $	$47 \cdot 1 \\ 44 \cdot 1 \\ 38 \cdot 5$	$32 \cdot 7$ $33 \cdot 4$ $34 \cdot 1$
$129 \cdot 37$ $130 \cdot 47$ $131 \cdot 57$	$ \begin{array}{rrr} & -5.54 \\ & -4.67 \\ & -3.63 \end{array} $	+ 0.48 + 0.70 + 0.91	$3 \cdot 462 \\ 2 \cdot 601 \\ 1 \cdot 662$	$ \begin{array}{rrrr} & 4 \cdot 82 \\ & 5 \cdot 42 \\ & 5 \cdot 84 \end{array} $	$ \begin{array}{r} 30 \cdot 9 \\ 22 \cdot 3 \\ 14 \cdot 0 \end{array} $	35 · 2 36 · 2 36 · 9
$132 \cdot 66$ $133 \cdot 75$ $134 \cdot 84$	$ \begin{array}{c cccc} & - & 2 \cdot 47 \\ & - & 1 \cdot 20 \\ & + & 0 \cdot 03 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.664 \\ -0.358 \\ -1.375$	$ \begin{array}{rrrr} & - & 6 \cdot 09 \\ & - & 6 \cdot 18 \\ & - & 6 \cdot 06 \end{array} $	$egin{array}{c} 7 \cdot 2 \ 3 \cdot 2 \ 2 \cdot {f 2} \end{array}$	37·5 38·2 38·6
$135 \cdot 92$ $137 \cdot 00$ $138 \cdot 07$	$1 \cdot 42 \\ 2 \cdot 74 \\ 3 \cdot 98$	$1.76 \\ 1.99 \\ 2.24$	$ \begin{array}{r} -2 \cdot 372 \\ -3 \cdot 320 \\ -4 \cdot 178 \end{array} $	$\begin{array}{c c} - & 5 \cdot 76 \\ - & 5 \cdot 26 \\ - & 4 \cdot 57 \end{array}$	5·1 11·5 20·9	$ \begin{array}{r} 38 \cdot 8 \\ 38 \cdot 7 \\ 38 \cdot 4 \end{array} $
$139 \cdot 14$ $140 \cdot 21$ $141 \cdot 27$	5·09 6·02 6·79	$2 \cdot 45 \\ 2 \cdot 77 \\ 3 \cdot 10$	$ \begin{array}{r} -4 \cdot 912 \\ -5 \cdot 501 \\ -5 \cdot 926 \end{array} $	$ \begin{array}{rrr} & 3.70 \\ & 2.69 \\ & 1.56 \end{array} $	31 · 9 44 · 5 55 · 7	$37 \cdot 8 \\ 37 \cdot 5 \\ 37 \cdot 6$
142 · 33 143 · 3 8 144 · 43	$7 \cdot 35 \\ 7 \cdot 73 \\ 7 \cdot 87$	3·42 3·78 4·01	$egin{array}{c} -6\cdot 173 \ -6\cdot 236 \ -6\cdot 112 \ \end{array}$	$\begin{array}{c c} - & 0 \cdot 32 \\ + & 1 \cdot 00 \\ & 2 \cdot 32 \end{array}$	$65 \cdot 7 \\ 74 \cdot 0 \\ 78 \cdot 0$	$38 \cdot 2$ $39 \cdot 9$ $43 \cdot 7$
145 · 48 146 · 5 3 14 7 · 57	$7 \cdot 72 \\ 7 \cdot 33 \\ 6 \cdot 64$	$4 \cdot 29 \\ 4 \cdot 41 \\ 4 \cdot 46$	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3·63 4·88 6·00	$78 \cdot 0 \\ 73 \cdot 2 \\ 64 \cdot 0$	$47 \cdot 0$ $52 \cdot 5$ $58 \cdot 4$
$148.61 \\ 149.65$	$5 \cdot 75 \\ 4 \cdot 64$	4·40 4·20	$ \begin{array}{r} -3 \cdot 934 \\ -2 \cdot 982 \end{array} $	6 · 96 7 · 75	$52 \cdot 4$ $39 \cdot 2$	$63 \cdot 9$
151 152 153 154 155 156 156 157	$ \begin{array}{r} 3 \cdot 00 \\ 1 \cdot 78 \\ 0 \cdot 19 \\ -1 \cdot 32 \\ -2 \cdot 74 \\ -4 \cdot 02 \\ -5 \cdot 32 \\ -6 \cdot 72 \\ -7 \cdot 78 \end{array} $	$3 \cdot 80$ $3 \cdot 29$ $2 \cdot 62$ $1 \cdot 80$ $0 \cdot 83$ $-0 \cdot 39$ $-1 \cdot 73$ $-3 \cdot 59$ $-5 \cdot 50$	$ \begin{array}{c} -1.50 \\ -0.34 \\ 1.00 \\ 2.20 \\ 3.30 \\ 4.50 \\ 5.44 \\ 6.40 \\ 7.27 \end{array} $	$ 8 \cdot 68 $ $ 9 \cdot 00 $ $ 9 \cdot 15 $ $ 8 \cdot 93 $ $ 8 \cdot 40 $ $ 7 \cdot 53 $ $ 6 \cdot 22 $ $ 4 \cdot 33 $ $ 2 \cdot 60 $	$\begin{array}{c} 23 \cdot 1 \\ 14 \cdot 0 \\ 6 \cdot 9 \\ 5 \cdot 0 \\ 7 \cdot 2 \\ 16 \cdot 3 \\ 31 \cdot 3 \\ 58 \cdot 1 \\ 90 \cdot 8 \end{array}$	$77 \cdot 6$ $81 \cdot 1$ $84 \cdot 7$ $84 \cdot 5$ $81 \cdot 5$ $77 \cdot 0$ $68 \cdot 3$ $59 \cdot 7$ $59 \cdot 7$
62 64 66 6 8	$\begin{array}{c} -10.62 \\ -10.96 \\ -10.58 \\ -9.00 \end{array}$	$-12 \cdot 45$ $-18 \cdot 2$ $-23 \cdot 5$ $-29 \cdot 5$	$9 \cdot 17$ $9 \cdot 5$ $9 \cdot 1$ $7 \cdot 9$	$ \begin{array}{c c} -4.80 \\ -11.0 \\ -17.3 \\ -24.8 \end{array} $	268 451 664 951	107 210 380 680
72 74 76 78	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -41 \cdot 0 \\ -45 \cdot 6 \\ -49 \cdot 3 \\ -51 \cdot 0 \end{array} $	4 · 7 3 · 0 1 · 6 0 · 8	$ \begin{array}{c c} -38.0 \\ -43.9 \\ -48.4 \\ -51.0 \end{array} $	1700 2080 2430 2600	$1470 \\ 1940 \\ 2350 \\ 2600$

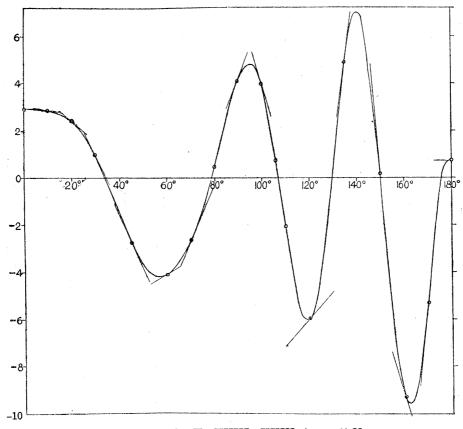
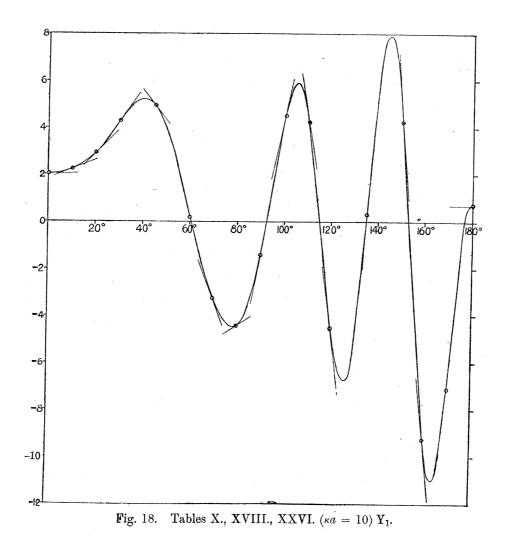



Fig. 17. Tables X., XVIII., XXVI. ($\kappa a = 9$) Y₁.

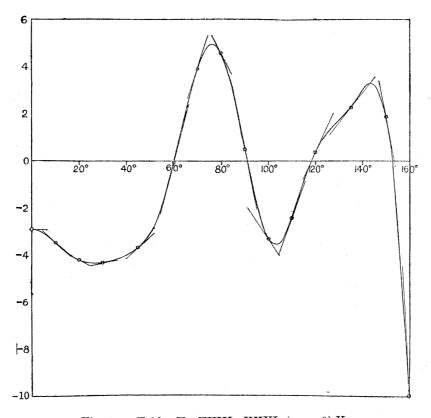


Fig. 19. Tables X., XVIII., XXVI. ($\kappa a = 9$) Y₂.

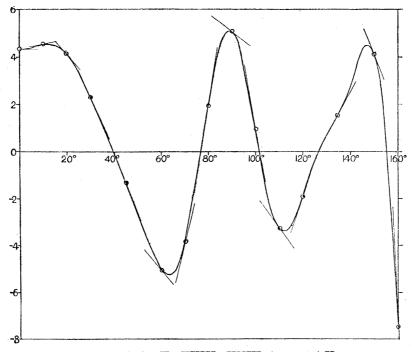


Fig. 20. Tables X., XVIII., XXVI ($\kappa a = 10$) Y₂.

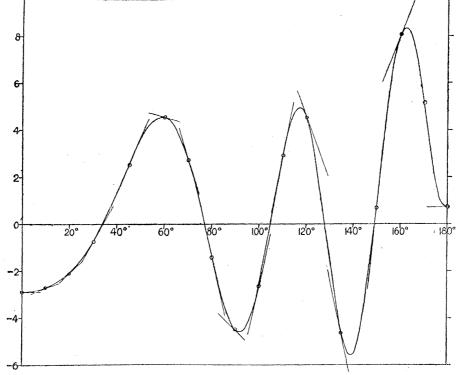
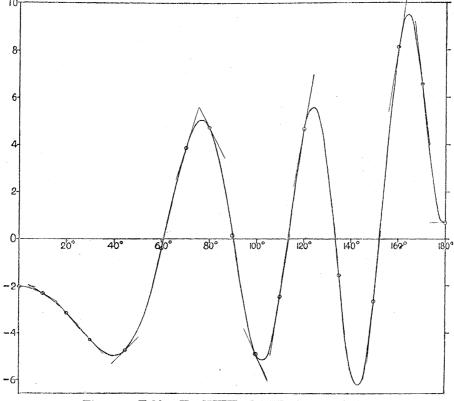
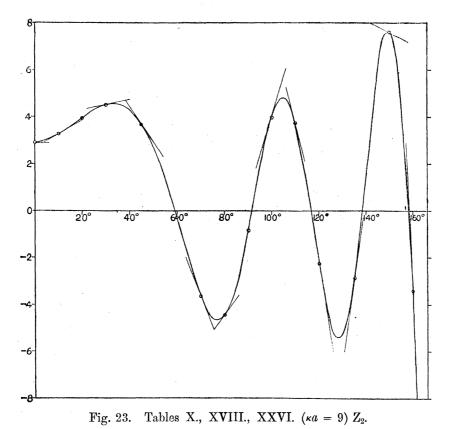
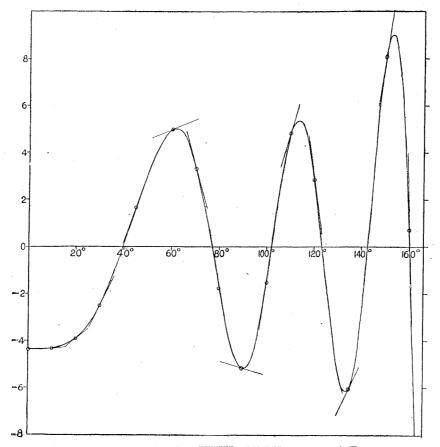
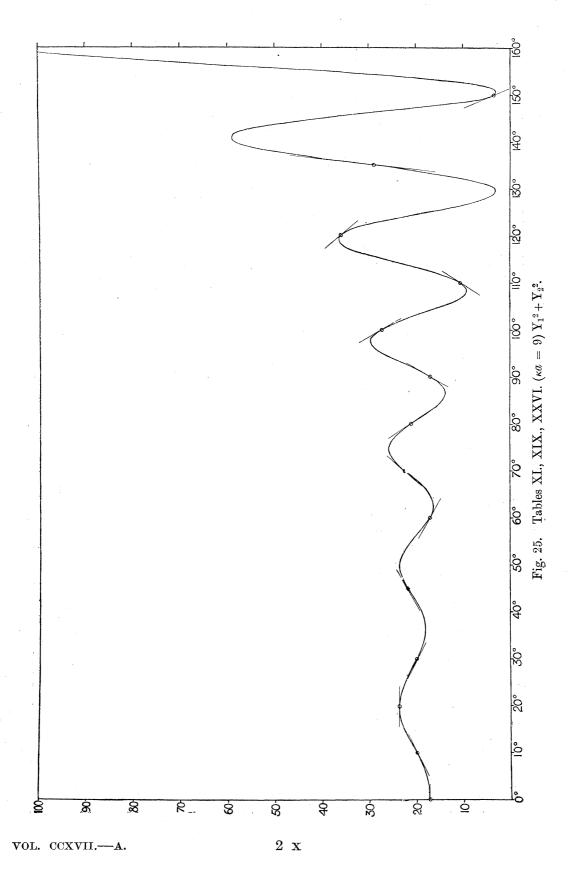
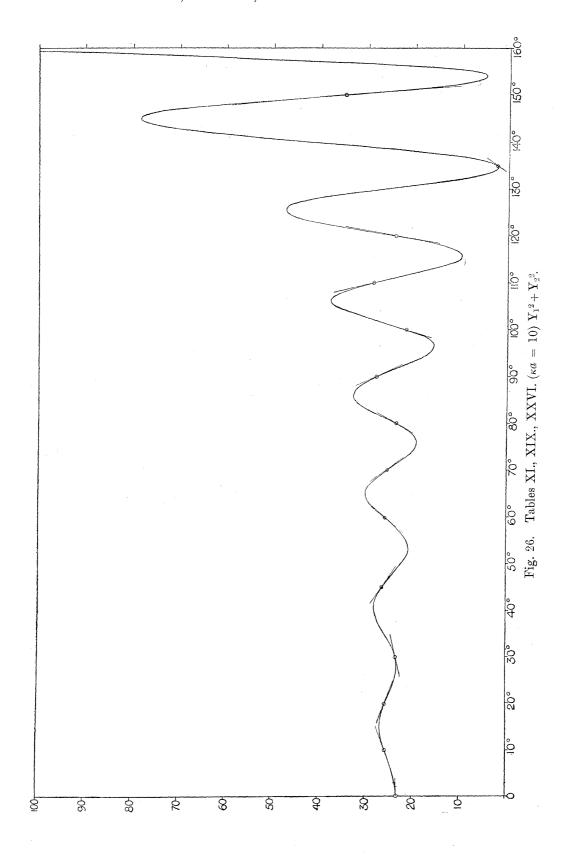
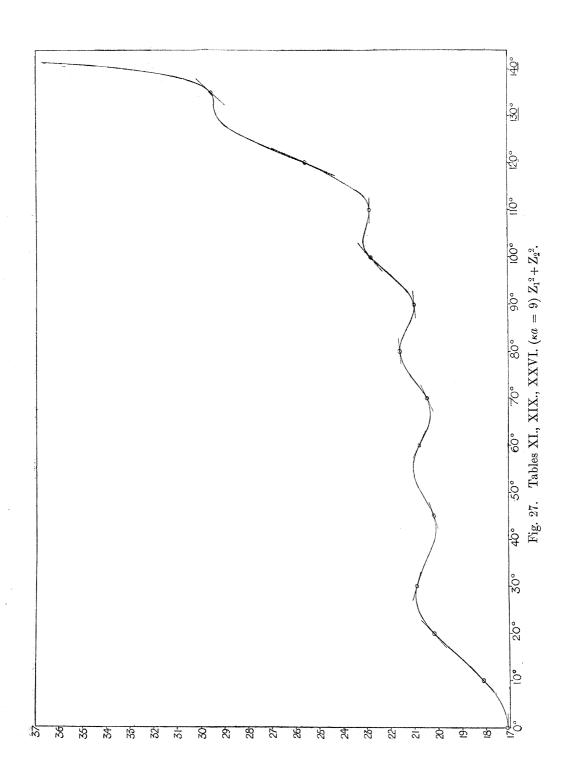





Fig. 21. Tables X., XVIII., XXVI. $(\kappa a = 9)$ Z₁.

Tables X., XVIII., XXVI. ($\kappa a = 10$) Z_1 .




Tables X., XVIII., XXVI. ($\kappa a = 10$) Z_2 .


Figs. 25 to 28 give the final graphs of Y₁²+Y₂², Z₁²+Z₂², the obtaining of which has been the object of the whole work.


From $\theta = 0^{\circ}$ to 120° the curve for $Z_1^2 + Z_2^2$ is probably correct to 0.2 per cent.; from 120° to 150°, to 0.5 per cent.; from 150° to 180°, to 1 per cent. The curve for $Y_1^2 + Y_2^2$ is probably correct to 1 per cent. throughout the range.

These curves are drawn to different scales, as $Z_1^2 + Z_2^2$ is approximately constant up to $\theta = 120^{\circ}$, while $Y_1^2 + Y_2^2$ has oscillations of increasing amplitude. The curves for $Y_1^2 + Y_2^2$ illustrate these oscillations up to the point where the last minimum occurs; after this the value of $Y_1^2 + Y_2^2$ increases rapidly to a maximum at $\theta = 180^\circ$. The curves for $Z_1^2 + Z_2^2$ illustrate the behaviour of this function up to $\theta = 140^\circ$, but do not show the last oscillation before the function begins to increase rapidly to its maximum at $\theta = 180^{\circ}$. For this range data are given in the tables.

